← 返回
光伏发电技术 储能系统 故障诊断 ★ 5.0

基于无人机图像与粗糙集理论的光伏系统故障检测

Fault detection in photovoltaic systems using unmanned aerial vehicle-captured images and rough set theory

语言:

中文摘要

摘要 随着光伏(PV)系统作为可持续能源的广泛应用,其性能因故障导致的退化问题日益突出,亟需高效的故障检测方法。本研究提出一种基于人工智能的方法,利用无人机(UAV)拍摄的图像实现对光伏组件的自动化检测。通过采用先进的特征提取技术,包括纹理分析、快速傅里叶变换(FFT)、灰度共生矩阵(GLCM)、灰度差异法(GLDM)以及离散小波变换(DWT),对图像数据进行深入分析。研究优化了一种基于粗糙集理论的规则分类器,当与DWT特征结合时,分类准确率达到100%。此外,还引入了数据增强技术以提升模型的鲁棒性。所提出的方法通过实现精确且非破坏性的故障检测,显著改善了光伏系统的维护水平,有助于提高太阳能利用的效率与可靠性。

English Abstract

Abstract The growing reliance on photovoltaic (PV) systems as a sustainable energy source is challenged by performance degradation due to faults, necessitating efficient fault detection methods. This study proposes an AI-driven approach using unmanned aerial vehicle (UAV)-captured images for automated PV module inspection. Advanced feature extraction techniques, including Texture Analysis, Fast Fourier Transform (FFT), Grey-Level Co-occurrence Matrix (GLCM), Grey-Level Difference Method (GLDM), and Discrete Wavelet Transform (DWT), were employed to analyze image data. A Rough Set-Based Rule Classifier was optimized, achieving 100% accuracy when paired with DWT features. Additionally, data augmentation techniques were integrated to enhance model robustness. The proposed method improves PV system maintenance by enabling precise, non-destructive fault detection, ensuring higher efficiency and reliability for solar energy adoption.
S

SunView 深度解读

该无人机+粗糙集理论的光伏故障检测技术对阳光电源iSolarCloud智慧运维平台具有重要应用价值。通过DWT特征提取实现100%准确率的非接触式故障诊断,可与SG系列逆变器的MPPT优化算法协同,提升大型光伏电站的预测性维护能力。该AI驱动方法可集成至PowerTitan储能系统的智能监控模块,实现光储一体化电站的全生命周期健康管理,降低运维成本并提高系统可靠性,为阳光电源数字化运维解决方案提供技术升级路径。