← 返回
光伏发电技术 机器学习 ★ 5.0

一种基于人工智能预测温室环境中光伏-热系统的能量参数的方法

An artificial intelligence approach to predict energy parameters in a photovoltaic-thermal system within a greenhouse

作者 Shojapour Pour · Ali Motevali · Seyed Hashem Samadi · Ranjbar-Nedamani Nedamani · Pourya Biparv · Amjad Anvari Moghaddam
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 295 卷
技术分类 光伏发电技术
技术标签 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 农业能源需求 可再生能源 人工智能 机器学习模型 能源参数预测
语言:

中文摘要

摘要 农业各个领域日益增长的能源需求,尤其是在温室设施中,迫切需要探索可行的解决方案。利用可再生能源,并结合人工智能(AI)技术对能耗数据进行预测与分析,为应对这一挑战提供了有前景的途径。本研究采用多种机器学习模型,针对基于纳米流体(Al2O3、SiO2、Al2O3-SiO2)的光伏-热系统,在温室内外环境下对其能量参数(如输出功率、电效率、热效率和总效率)进行预测。建模过程采用了时延神经网络(TDNN)、多层感知机(MLP)以及非线性自回归(NARX)方法,并引入了对数激活函数。不同能量参数的建模结果表明,NARX网络具有最高的预测精度,其平均统计指标为R² = 0.9979,RMSE = 0.1062;相比之下,MLP网络的预测精度最低,其平均统计指标为R² = -0.1657,RMSE = 3.4482。此外,对能量参数建模结果的比较显示,温室外部环境下的模拟结果优于内部环境,前者的平均统计指标为R² = 0.7038、RMSE = 0.9358,而后者仅为R² = 0.5162、RMSE = 1.5267。同时,对不同网络收敛时间的分析表明,MLP、TDNN和NARX网络所需的平均收敛时间分别为0.4057小时、37.3864小时和103.5006小时。

English Abstract

Abstract The ever-increasing energy demands in various agricultural sectors, especially in greenhouse facilities, require exploring feasible solutions. Utilizing renewable energy sources, along with implementing artificial intelligence (AI) to predict and analyze energy consumption data, offers a promising approach to tackle this challenge. In this research, various machine learning models are used to predict energy parameters (such as output power, electrical efficiency, thermal efficiency, and total efficiency) of a photovoltaic-thermal system based on nanofluids (Al 2 O 3 , SiO 2 , Al 2 O 3 -SiO 2 ) both inside and outside a greenhouse environment. The modeling is carried out using time-delay neural networks (TDNN), multilayer perceptron (MLP), and nonlinear autoregression (NARX) methods, incorporating a logarithmic activation function. The results of the modeling for predicting different energy parameters indicate that the NARX network achieves the highest accuracy, with average statistical indicators of R 2 = 0.9979 and RMSE = 0.1062. In contrast, the MLP network shows the lowest accuracy, with average statistical indicators of R 2 = −0.1657 and RMSE = 3.4482. Furthermore, a comparison of the energy parameter modeling results shows that simulations conducted outside the greenhouse have better statistical indicators, with an average R 2 = 0.7038 and RMSE = 0.9358, compared to simulations conducted inside the greenhouse, which yielded an average R 2 = 0.5162 and RMSE = 1.5267. Additionally, an analysis of the convergence times for the different networks reveals that the MLP, TDNN , and NARX networks require average times of 0.4057 h, 37.3864 h, and 103.5006 h, respectively.
S

SunView 深度解读

该研究对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要价值。NARX神经网络预测光伏系统能效参数(R²=0.9979)的方法,可集成至我司智能运维平台,实现MPPT算法优化和发电效率预测性维护。纳米流体光热系统的AI建模思路,可应用于户用光伏热电联供场景,提升SG系列逆变器在农业光伏领域的系统集成能力。机器学习预测模型有助于完善iSolarCloud的能量管理策略,特别是温室等特殊应用场景的精准功率预测与热管理优化。