← 返回
光伏发电技术 机器学习 ★ 5.0

基于不同半导体层

CZTS、CZTGS、Al0.8Ga0.2Sb、GaAs)的CsBi3I10异质结太阳能电池数值模拟与性能提升及机器学习分析

语言:

中文摘要

摘要 正在研究提高铋卤化物基光伏器件效率的策略,同时也在关注这些太阳能电池带来的积极生态影响。本研究通过采用多种底部吸收层,系统地考察了基于CsBi3I10的异质结太阳能电池的转换效率,并重点分析了各功能层的厚度和掺杂浓度、工作温度以及背接触功函数等因素对器件性能的影响。通过确定一种高效的GaAs半导体层,并将其受主浓度优化至5×10^16 cm^−3,同时增加其厚度,显著提升了器件效率。在本研究中,设计了一种新型的CsBi3I10基异质结钙钛矿太阳能电池结构:Au/NiO/GaAs/CsBi3I10/ZnSe/ITO。在进一步优化空穴传输层(HTL)和电子传输层(ETL)之前,首先针对器件的最佳性能区域精确筛选出最优的半导体吸收层。研究发现,ZnSe和NiO分别表现出最优异的电子传输层和空穴传输层特性。此外,还引入了机器学习模型,通过观察输入矩阵变化下输出参数的演化趋势,以确定器件性能的最优配置。该异质结太阳能电池展现出卓越的光电性能,实现了高达27.40%的能量转换效率,开路电压(Voc)达到1.03 V,短路电流密度(Jsc)为30.2 mA/cm²,填充因子达88.1%。这一效率水平相较于传统的CsBi3I10基异质结太阳能电池具有显著提升。因此,该钙钛矿太阳能电池结构已成为一种极具前景的未来器件,对于推动无铅异质结光伏器件的开发具有重要意义。

English Abstract

Abstract Strategies to boost the efficiency of bismuth halide-based photovoltaic devices are being investigated, along with the positive ecological impacts of these solar cells. This study thoroughly examines the efficiency of a CsBi 3 I 10 -based heterojunction solar cell by employing diverse bottom absorber layers, with an emphasis on the impact of several aspects such as thickness and doping density of various layers, operating temperature and work function of the back contact on device performance. Efficiency has been elevated by determining an extremely effective GaAs semiconductor layer via an accepter concentration of 5 × 10 16 cm −3 and enhancing its thickness. In the presented work, a novel CsBi 3 I 10 -based heterojunction PSC is designed as Au/NiO/GaAs/CsBi 3 I 10 /ZnSe/ITO. Optimizing a precise semiconductor layer for the excellent performance zone of our device is prior to progressing to the HTL and ETL layers. It has been identified that ZnSe and NiO exhibit the most efficient electron transport layer and hole transport layer properties. In addition, a Machine Learning model was employed to ascertain the optimized device performance by observing the progression of the output on input matrices. The heterojunction solar cell demonstrates superior performance, achieving an impressive efficiency of 27.40 %, an open circuit voltage (V oc ) of 1.03 V, a short circuit current density (J sc ) of 30.2 mA/cm 2, and a fill factor of 88.1 %. This represents a substantial improvement in efficiency, far exceeding that of the conventional CsBi 3 I 10 -based heterojunction solar cell. In that vein, this PSC architecture has emerged as a promising future device that is crucial to the fabrication of lead-free heterojunction PV devices.
S

SunView 深度解读

该CsBi3I10异质结电池研究对阳光电源SG系列光伏逆变器具有前瞻价值。无铅钙钛矿材料的27.4%转换效率突破,为新型光伏组件适配提供技术储备。机器学习优化方法可借鉴至MPPT算法改进和iSolarCloud平台的发电预测模型中,提升逆变器在新材料电池下的能量捕获效率。异质结层间优化思路亦可启发功率器件中SiC/GaN界面设计,降低开关损耗。建议跟踪无铅钙钛矿商业化进程,提前布局逆变器兼容性测试。