← 返回
基于Hellinger距离和个体条件期望分析的光伏系统传感器故障检测与诊断
Sensor fault detection and diagnosis in photovoltaic systems using Hellinger Distance and Individual Conditional Expectation analysis
| 作者 | Fouzi Harrou · K. Ramakrishna Kinib · Muddu Madakyaru · Ying Suna |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 298 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Developed sensor fault detection using PLS and HD with KDE thresholds. |
语言:
中文摘要
准确的故障检测对于维持光伏(PV)系统的最佳性能并延长系统寿命至关重要。本文提出了一种结合偏最小二乘(PLS)回归与基于Hellinger距离(HD)的监控图的传感器故障检测与诊断方法,该方法在处理高维数据集中的多重共线性问题以及降维方面具有优势。PLS生成能够反映偏差的残差,随后利用基于HD的监控图对这些残差进行分析,其控制阈值通过核密度估计(KDE)确定。该方法增强了对多种传感器故障的敏感性,包括偏差、漂移(或老化)以及间歇性故障。在本研究中,通过向总辐射计和温度传感器中人为注入传感器故障,以验证所提出方法的有效性。在此框架下,气象数据和太阳辐照度作为PLS模型的输入变量,而光伏发电功率则作为输出变量。与传统的PLS监控图相比,PLS-HD方法在故障检测方面表现出更优的性能。在故障诊断方面,采用个体条件期望(ICE)图来可视化故障条件下输入特征与模型预测之间关系的变化,从而分析故障的影响。该集成方法为光伏系统中的传感器故障检测与诊断提供了一个鲁棒且可解释的框架。
English Abstract
Abstract Accurate fault detection in photovoltaic (PV) systems is crucial for maintaining optimal performance and extending the system lifespan. This paper introduces a sensor fault detection and diagnosis approach that combines Partial Least Squares (PLS) regression with a Hellinger Distance (HD)-based monitoring chart, offering advantages in handling multicollinearity and reducing dimensionality in high-dimensional datasets. PLS generates residuals that capture deviations, which are then analyzed using an HD-based monitoring chart with thresholds determined by Kernel Density Estimation (KDE). This method enhances sensitivity to various sensor faults, including bias, drift (or aging), and intermittent faults. In this study, sensor faults were injected into both pyranometers and temperature sensors to validate the effectiveness of the proposed approach. In this context, weather data and solar irradiance serve as input variables in the PLS model, while PV power production is the output variable. Compared to conventional PLS monitoring charts, the PLS-HD approach demonstrates superior performance in fault detection. For fault diagnosis, Individual Conditional Expectation (ICE) plots are utilized to investigate the impact of faults by visualizing changes in the relationship between input features and model predictions under faulty conditions. This integrated approach provides a robust and interpretable framework for detecting and diagnosing sensor faults in PV systems.
S
SunView 深度解读
该传感器故障诊断技术对阳光电源SG系列光伏逆变器及iSolarCloud智能运维平台具有重要应用价值。PLS-HD方法可有效识别辐照度计和温度传感器的偏差、漂移及间歇性故障,提升MPPT优化精度和发电效率预测准确性。ICE可视化分析可集成至iSolarCloud预测性维护模块,实现故障溯源与诊断。该方法处理高维多重共线性数据的能力,适用于大规模光伏电站多传感器监测场景,可降低误报率,延长系统寿命,为智能运维提供可解释性强的决策支持工具。