← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于迎风侧首排数据与深度学习的长跨柔性光伏阵列风压分布预测

Prediction of wind pressure distribution on long-span flexible photovoltaic arrays using windward first row data and deep learning

语言:

中文摘要

摘要 长跨柔性光伏(PV)结构是解决“光伏+”发展挑战的关键方案之一。然而,其大跨度、轻质、低刚度和高离地间隙等特性加剧了风致振动效应,使得风荷载成为结构设计中的关键因素。鉴于风压试验中风压数据具有空间分布特征且测点数量受限,本文提出一种全卷积网络(FCN)模型,该模型在卷积神经网络(CNN)框架内融合多尺度特征与跳跃连接结构,利用柔性光伏阵列首排的风压场数据来预测整个光伏阵列的风压分布。结果表明,所预测风压的相对误差约为9%,预测值与实际风压之间的相关系数超过0.95。这说明该FCN模型能够有效捕捉长跨柔性光伏结构的风压特性,具有重要的科学意义与工程应用价值。

English Abstract

Abstract The long-span flexible photovoltaic (PV) structure is a key solution to the challenges in “PV+” development. However, its characteristics—long span, light weight, low stiffness, and high clearance—exacerbate wind-induced vibrations, with wind loads becoming a critical factor in structural design. Given the spatial distribution of wind pressure data and the limitation of pressure measurement points in wind tunnel tests, this study proposes a fully convolutional network (FCN) model, integrating multi-scale and skip connections within the convolutional neural network (CNN) framework, which predicts the wind pressure distribution on PV arrays using the wind pressure field of the first row of the flexible PV arrays. The results show that the relative error of the predicted wind pressure is about 9 %, with the correlation coefficient between the predicted and actual wind pressure exceeds 0.95. This demonstrates that the FCN model effectively captures the wind pressure characteristics of long-span flexible PV structures, offering significant scientific and engineering value.
S

SunView 深度解读

该风压预测技术对阳光电源大型地面光伏电站的结构设计具有重要价值。针对渔光互补、农光互补等'光伏+'场景中采用的大跨度柔性支架系统,该深度学习模型可通过少量迎风侧测点数据预测整体风压分布,优化支架结构设计,降低风洞试验成本。可应用于SG系列逆变器配套的柔性支架系统选型,指导PowerTitan储能系统在高风险区域的布局优化。该技术与iSolarCloud平台结合,可实现电站风载监测与预警,提升大跨度光伏阵列的安全性和可靠性,为阳光电源'光伏+'解决方案提供结构安全保障。