← 返回
基于静止卫星观测数据的机器学习短波辐射预报以优化太阳能光伏和聚光太阳能系统
Machine learning forecasts of short wave radiation from geostationary satellite measurements to optimize solar photovoltaic and concentrated solar power systems
| 作者 | Hongyu Wua · Chengxin Zhangb · Jingkai Xuea · Xinhan Niub · Bin Zhaoe · Gang Peie · Cheng Liubc |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Weighted cloud cover hybrid models significantly enhance forecast accuracy. |
语言:
中文摘要
摘要 在全球能源转型与可持续发展的背景下,精确的短波辐射(SWR)预测对于提高太阳能光伏发电(PV)和聚光太阳能发电(CSP)系统的效率与经济可行性日益重要。本研究提出了一种创新的机器学习短波辐射预测模型,利用静止卫星的多波段太阳短波辐射测量数据,实现未来一小时内的短波辐射预报。该模型基于一种云量加权的混合模型,结合了卷积长短期记忆网络(ConvLSTM)与傅里叶神经算子(FNO)模型。在测试过程中,优化后的混合模型表现优于ERA5再分析数据,预测误差降低了24.14%,平均绝对误差降低了38.62%,R²值提高了6.4%。在预测区域(经度104–110°,纬度35–40°),荒漠与稀疏植被区的预测精度比草地地区高出8.13%,表明通过优化太阳能电站选址具有进一步提升性能的潜力。改进后的模型可通过实时电网调节等策略,在光伏系统中减少0.067美元/平方米的发电损失;同时,通过及时调整定日镜与接收器措施,可避免聚光太阳能系统每日13.97千瓦时/平方米的能量损失。在共享社会经济路径可持续发展情景(SSP1-2.6)下,到2100年,采用该混合短波辐射预测模型相比原计划预计可增加发电量895.47太瓦时(TWh)。所提出的混合预测模型显著提升了太阳辐射预测精度,有助于推动未来太阳能发电的发展。
English Abstract
Abstract In the context of global energy transition and sustainable development, accurate short wave radiation (SWR) forecasting is increasingly vital for enhancing the efficiency and economic viability of solar photovoltaic (PV) and concentrated solar power (CSP) systems. This study presents an innovative machine-learning forecasting model of SWR within the next hour, using multi-band shortwave solar radiation measurements from the geostationary satellite. The model is based on a cloud cover-weighted hybrid model combining the convolutional long short-term memory (ConvLSTM) and Fourier neural operator (FNO) models. During testing, the optimized hybrid model performed better than ERA5 data, reducing the prediction error by 24.14%, the average absolute error by 38.62%, and improving the R 2 value by 6.4%. In the prediction area (longitude 104–110°, latitude 35–40°), the prediction accuracy in barren and sparsely vegetated areas was 8.13% higher compared to grasslands, indicating future potential for further enhancement through optimized solar power plant site selection. The improved model can reduce power generation losses by 0.067 USD/m 2 in PV systems through real-time grid regulation and other strategies, and can also prevent daily energy losses of 13.97 kWh/m 2 in concentrated solar power systems by timely adjusting the heliostats and receiver measures. Under the Shared Socioeconomic Pathways sustainable development scenario (SSP1-2.6), by 2100, the adoption of the hybrid SWR forecasting model is expected to increase power generation by 895.47 TWh compared to the original plan. The proposed hybrid forecasting model significantly improves solar radiation forecast accuracy, enhancing the future development of solar power generation.
S
SunView 深度解读
该卫星遥感+机器学习的短波辐射预测技术对阳光电源SG系列光伏逆变器和ST储能系统具有重要应用价值。通过ConvLSTM-FNO混合模型实现小时级精准预测,可优化MPPT算法实时响应辐照变化,提升发电效率6.4%。结合iSolarCloud平台可实现光储协同调度:光伏侧提前调整并网策略,储能侧优化充放电曲线,减少弃光损失。该技术还可指导电站选址,在荒漠等高精度预测区域部署PowerTitan储能系统,通过GFM控制增强电网稳定性,为SSP1-2.6情景下TWh级装机增长提供智能化运维支撑。