← 返回
基于深度神经网络的变气象条件下光伏参数精确估计模型
Deep neural networks model for accurate photovoltaic parameter estimation under variable weather conditions
| 作者 | Salem Batiyah · Ahmed Al-Subhi · Osama Elsherbiny · Obaid Aldosari · Mohammed Aldawsari |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Developed a deep neural network (DNN) model for accurate PV parameter estimation under varying weather conditions. |
语言:
中文摘要
摘要 估算光伏(PV)参数对于光伏系统的精确建模和性能预测至关重要。本文提出了一种基于深度神经网络的方法,通过数据手册中的信息来确定光伏参数。该技术利用MATLAB/Simulink库中光伏模块单元生成的数千个数据点进行训练。采用平均绝对百分比误差(MAPE)、决定系数(R-squared)和均方根误差(RMSE)等指标对模型的有效性进行了评估。通过利用神经网络固有的模式识别和学习能力,该模型能够准确地估计光伏参数。为了评估所提方法的有效性,对其性能进行了多种测试,包括对测试数据、实验数据以及在标准测试条件(STC)和不同气象条件下商用光伏组件的验证。同时,还将该方法的性能与文献中报道的多种最新算法进行了比较。所有评估结果均提供了关于所提方法性能的深入分析。研究结果表明,基于神经网络的方法在光伏参数估计方面具有良好的有效性,展现出作为传统估计算法可行替代方案的巨大潜力。
English Abstract
Abstract Estimating photovoltaic (PV) parameters is essential for accurate modeling and performance prediction of PV systems. This paper presents a deep neural network-based approach for determining the PV parameters via information from datasheets. The proposed technique is trained using thousands of data points generated from the PV module block in the MATLAB/Simulink library. The effectiveness of the model is evaluated using metrics such as Mean Absolute Percentage Error (MAPE), the coefficient of determination (R-squared), and Root Mean Square Error (RMSE). By utilizing the inherent pattern recognition and learning capabilities of neural networks, the model is able to estimate the PV parameters accurately. To evaluate the effectiveness of the proposed approach, the performance is subjected to different assessments including testing data, experimental data and commercial PV modules under standard test conditions (STC) as well as different weather conditions. The performance has been also compared with various recent algorithms reported in the literature. The results obtained from all assessments provide insights into the performance of the proposed approach. The findings demonstrate the effectiveness of the neural network-based method in estimating PV parameters, showcasing its potential as a viable alternative to traditional estimation techniques.
S
SunView 深度解读
该深度学习光伏参数估计技术对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。通过神经网络精准估算不同气象条件下的光伏参数,可优化MPPT算法实时性能,提升逆变器发电效率。该方法可集成至智能运维平台,实现组件参数在线辨识与性能预测,减少现场测试成本。结合PowerTitan储能系统,精准的光伏建模能改善光储协调控制策略,提高系统整体经济性。建议将此技术应用于数字孪生系统开发,增强预测性维护能力。