← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于混合深度学习的无分布假设光伏功率概率密度预测

Distribution-Free photovoltaic power probability density forecasting based on hybrid deep learning

作者 Haohao Fenga · Yujing Shia · Mifeng Rena · Wenjie Zhang · Jianhua Zhang · Yusheng Zhaoa
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A distribution-free probabilistic density forecasting method for photovoltaic power is proposed.
语言:

中文摘要

摘要 光伏(PV)发电具有高度随机性,概率预测能够有效量化其不确定性。然而,现有的概率预测模型受限于先验分布假设和不完整的表示方式,削弱了其对真实数据生成过程的建模能力,导致预测效果不理想。为解决这一问题,本文提出一种基于B样条-iTransformer-多头交叉注意力(BS-iMCFormer)的无分布假设光伏功率概率密度预测模型。该模型的核心在于:利用B样条拟合通过核密度估计(KDE)获得的概率密度函数(PDF),提取表征PDF特征的控制点以构建系数向量,并将PDF预测转化为系数向量的预测;采用iMCFormer模型融合气象、电力与系数向量之间的跨模态关联,实现增强的特征重构;通过B样条插值得到由预测系数向量对应的预测PDF,从而避免了参数化分布假设和离散化表示的限制。本研究采用中国河北省某光伏电站的实际数据进行实验验证。结果表明,所提模型预测得到的概率密度函数在视觉重叠度和统计一致性方面均显著优于所有对比模型,与真实数据的核密度估计更为接近。在衡量分布差异的核心指标KL散度上降低了54.82%,MAE和RMSE分别下降了68.93%和69.42%,相关性指标R2提升了6.76%。

English Abstract

Abstract Photovoltaic (PV) power generation exhibits high randomness, and probabilistic forecasting can effectively quantify its uncertainty. However, existing probabilistic forecasting models are constrained by prior distribution assumptions and incomplete representation, which weakens their ability to model the true data generation process, leading to suboptimal prediction results. To address this, this study proposes a distribution-free probabilistic density forecasting model for PV power based on B-spline-iTransformer-Multi-Head Cross Attention(BS-iMCFormer). The core of the model lies in: using B-splines to fit the probability density function (PDF), which is obtained through kernel density estimation (KDE), extracting control points that represent the characteristics of the PDF to construct the coefficient vector and transforming the PDF prediction into the prediction of the coefficient vector; utilizing iMCFormer to integrate meteorological, power, and coefficient vector cross-modal associations to achieve enhanced feature reconstruction; and employing B-spline interpolation to obtain the predicted PDF from the predicted coefficient vector, thus avoiding the constraints of parametric distribution assumptions and discrete representation. The study conducts experiments using data from a PV station in Hebei Province, China. The results show that the proposed model’s predicted PDF significantly outperforms all comparison models in terms of visual overlap and statistical consistency with the real data’s kernel density estimate. The core metric of distribution difference, KL divergence, is reduced by 54.82%, while MAE and RMSE decrease by 68.93% and 69.42%, respectively, and the correlation metric R2 improves by 6.76%.
S

SunView 深度解读

该无分布假设的光伏功率概率密度预测技术对阳光电源iSolarCloud智慧运维平台及SG系列逆变器具有重要应用价值。基于B样条-iTransformer的混合深度学习模型可集成至预测性维护系统,通过精准量化发电不确定性,优化ST系列储能PCS的充放电策略制定。其KL散度降低54.82%的性能提升,可显著改善光储协同控制精度,支撑GFM/GFL控制算法在高比例新能源场景下的稳定运行,并为PowerTitan储能系统提供更可靠的功率预测输入,提升整体系统经济性与电网友好性。