← 返回
一种基于分段二极管模型的自适应四层数字孪生用于光伏组件实时故障诊断与输出特性表征
An adaptive four-layer digital twin with segmented diode model for real-time fault diagnosis and output characterization of PV modules
| 作者 | Yihan Chena · Mingyao Maa · Wenting Maa · Xilian Zhoua · Rui Zhang · Zhenyu Fangb |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A four-layer digital twin model is proposed for both mismatch and non-mismatch faults. |
语言:
中文摘要
摘要 随着光伏发电的快速发展,光伏组件的精确故障诊断与输出特性表征已成为关键挑战。现有的光伏模型通常缺乏实时适应性,限制了其在复杂且动态运行条件下的有效性。为克服这些局限性,本文提出了一种专为光伏组件设计的新型四层数字孪生(DT)模型架构。该框架独特地融合了基于物理信息的分段二极管模型与混合型菌群生长-差分进化(FG-DE)优化算法,实现了高精度建模与鲁棒的多源数据融合。与传统模型不同,所提出的分段二极管模型能够根据变化的故障条件——包括失配与非失配故障——进行动态调整,从而对故障机理和输出行为提供更深入的洞察。虚拟层持续与物理组件数据同步,而决策层则采用分层机器学习策略,实现准确的实时故障分类与性能预测。在四个大型光伏电站上的实验验证表明,该模型的平均故障诊断准确率达到98.49%,较传统方法提升了2.37%。在输出特性表征方面,所提方法的平均均方根误差(RMSE)为0.0555 A,决定系数R²达到0.9715,分别实现了70.10%的误差降低和10.88%的拟合优度提升。这些结果凸显了该模型在智能光伏系统中部署的重大潜力,为实时监测、诊断与控制提供了一种可扩展、数据驱动的解决方案。
English Abstract
Abstract With the rapid growth of photovoltaic (PV) power generation, accurate fault diagnosis and output characterization of PV modules have become crucial challenges. Existing PV models often lack real-time adaptability, limiting their effectiveness under complex and dynamic operational conditions. To address these limitations, this paper proposes a novel four-layer digital twin (DT) model architecture specifically designed for PV modules . The framework uniquely integrates a physics-informed segmented diode model with a hybrid Fungal Growth-Differential Evolution (FG-DE) optimization algorithm, enabling high-precision modeling and robust multi-source data fusion . Unlike traditional models, the proposed segmented diode model is dynamically adjusted to varying fault conditions – both mismatch and non-mismatch – providing detailed insights into fault mechanisms and output behavior. The virtual layer continuously synchronizes with physical module data, while the decision layer employs a hierarchical machine learning strategy for accurate, real-time fault classification and performance prediction. Experimental validation across four large-scale PV power stations demonstrates that the model achieves an average fault diagnosis accuracy of 98.49%, reflecting a 2.37% improvement over traditional methods. In terms of output characteristic representation, the proposed method attains an average root mean square error (RMSE) of 0.0555 A and a coefficient of determination R 2 of 0.9715, indicating a 70.10% reduction in error and a 10.88% improvement in goodness of fit , respectively. These results underscore the model’s significant potential for deployment in intelligent PV systems , offering a scalable, data-driven solution for real-time monitoring, diagnosis, and control.
S
SunView 深度解读
该四层数字孪生架构对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。其分段二极管模型可增强MPPT算法在复杂故障场景下的精准追踪能力,98.49%的故障诊断准确率可直接集成至预测性运维系统。混合优化算法与虚拟同步层的实时数据融合机制,能显著提升1500V大型电站的组件级监控精度,为iSolarCloud智能运维平台提供更细粒度的性能预测与故障预警能力,助力降低电站LCOE并提高发电量。该技术框架可扩展至储能侧ST系列PCS的电池单体建模与健康管理。