← 返回
光伏发电技术 储能系统 机器学习 ★ 5.0

利用光伏参数和机器学习确定硅太阳能电池中的铁浓度

Determination the iron concentration in silicon solar cells using photovoltaic parameters and machine learning

作者 Oleg Olikh · Oleksii Zavhorodni
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 300 卷
技术分类 光伏发电技术
技术标签 储能系统 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 80 ML models for iron quantification in silicon solar were tested.
语言:

中文摘要

摘要 本研究提出了一种基于机器学习(ML)的创新方法,用于量化硅太阳能电池中的铁杂质。通过对80种模型进行综合分析,采用随机森林(RF)、梯度提升(GB)、极端梯度提升(XGB)、支持向量回归(SVR)和深度神经网络(DNN)等算法,根据FeB对解离引起的光伏参数变化来预测铁浓度。研究识别了训练数据集为最小化预测误差所需满足的条件,以及能够产生最准确预测的特征组合。此外,评估了使用主成分分析(PCA)进行数据预处理的有效性。结果表明,XGB和DNN模型优于其他模型,在合成数据上达到的均方误差(MSE)、平均绝对百分比误差(MAPE)和决定系数(R²)分别高达0.003、3%和0.997,在实验数据上则分别达到0.004、9%和0.987。

English Abstract

Abstract This study introduces a pioneering machine learning (ML)-based methodology for quantifying iron impurities in silicon solar cells . A comprehensive analysis was done on 80 models, utilizing algorithms such as Random Forest (RF), Gradient Boosting (GB), eXtreme Gradient Boosting (XGB), Support Vector Regression (SVR), and Deep Neural Networks (DNN) to predict iron concentration based on variations in photovoltaic parameters caused by FeB pair dissociation. The conditions the training dataset must meet to minimize forecasting errors were identified, along with the feature combinations that yield the most accurate predictions. Furthermore, the effectiveness of using Principal Component Analysis for data pre-processing was assessed. The results demonstrate that XGB and DNN outperform other models, achieving MSE , MAPE, and R 2 values of up to 0.003, 3%, and 0.997 for synthetic data and 0.004, 9%, and 0.987 for experimental data.
S

SunView 深度解读

该机器学习铁杂质检测技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。通过XGB/DNN算法实时监测组件铁污染导致的效率衰减,可集成至MPPT优化算法中实现动态功率预测修正。建议将此方法嵌入智能运维系统,结合光伏参数变化特征实现组件质量分级与寿命预测,提升电站资产管理精度。该技术还可应用于PowerTitan储能系统的电池健康状态评估,通过参数关联分析预判性能劣化趋势,优化充放电策略。