← 返回
光伏发电技术 故障诊断 ★ 5.0

基于卷积神经网络的归一化I-V曲线光伏故障诊断及可解释性分析

CNN-based photovoltaic fault diagnosis using normalized I–V curves with Explainability analysis

作者 Woogyun Shin · Jin Seok Lee · Young Chul Ju · Hye Mi Hwang · Sukwhan Ko
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Measured PV string I–V curves were normalized with a simulation model.
语言:

中文摘要

摘要 全球各国正在扩大可再生能源的应用,以实现2050年碳中和目标。在各类可再生能源中,太阳能的发展速度最快,部署规模最为广泛。随着光伏(PV)电站数量的增加,运维市场不断扩大,故障诊断技术也逐步发展,融合了传统方法与人工智能技术。本研究提出一种利用光伏组串的归一化电流-电压(I-V)曲线并结合卷积神经网络(CNN)的故障诊断方法。实测的I-V曲线通过考虑辐照度、组件温度和衰减率的仿真模型进行归一化处理。归一化后的曲线根据其形态特征和电气参数被标注为正常状态或六种故障类型之一。使用这些数据训练的CNN模型在训练集和验证集上的准确率分别达到99.34%和99.39%。通过逐层敏感性分析和遮挡敏感性分析对CNN的分类过程进行了解释。此外,在模拟包含正常与多种故障状态的光伏组串实验中,训练好的CNN对实测I-V曲线的分类平均准确率达到98.3%。在实际运行的光伏电站中的评估结果显示,该光伏故障诊断(PVDF)模型能够优先识别主导的I-V曲线模式,成功实现了对具有微弱特征模式故障的分类。

English Abstract

Abstract Countries worldwide are expanding the adoption of renewable energy to achieve carbon neutrality by 2050. Among the renewable sources, solar energy has experienced the fastest growth and largest deployment. As the number of photovoltaic (PV) plants increases, the operation and maintenance market expands, along with fault-diagnosis technologies that integrate traditional methods with artificial intelligence. This study proposes a fault-diagnosis technique that utilizes normalized current–voltage (I–V) curves of PV strings and a convolutional neural network (CNN). Measured I–V curves were normalized using a simulation model considering irradiance, module temperature, and degradation rate. The normalized curves were labeled as normal or as one of six fault types based on patterns and electrical parameters. A CNN trained with these data achieved training and validation accuracies of 99.34% and 99.39%, respectively. Layer-wise and occlusion sensitivity analyses were performed to interpret the classification process of CNN. Additionally, in a PV string where normal and faulty conditions were simulated, the trained CNN classified measured I–V curves with an average accuracy of 98.3%. When evaluated at an operational PV plant, the PVDF model prioritized the dominant I–V curve pattern for fault classification and successfully classified faults with subtle patterns.
S

SunView 深度解读

该基于CNN的光伏故障诊断技术对阳光电源SG系列逆变器及iSolarCloud平台具有重要应用价值。通过归一化I-V曲线实现99.39%验证准确率的六类故障识别,可直接集成至智能运维系统,增强预测性维护能力。技术核心在于消除辐照度和温度影响的归一化处理,与阳光电源MPPT优化算法形成互补,可在组串级实现实时故障定位。可解释性分析方法为逆变器嵌入式诊断算法提供轻量化方向,建议结合现有SG逆变器的I-V曲线扫描功能,开发边缘计算诊断模块,降低云端依赖,提升电站智能化水平。