← 返回
光伏发电技术 机器学习 ★ 5.0

基于机器学习的单面和双面光伏系统最佳倾角预测

Machine learning-based prediction of optimal tilt angles for monofacial and bifacial PV systems

作者 Hanadi Harou · Jimmy S.Iss · Pierre Rahme
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 ML models predict optimal tilt angles for mono and bifacial PV systems in the U.S.
语言:

中文摘要

摘要 本研究提出了一种新颖的基于机器学习的框架,用于预测单面和双面光伏系统在不同调整策略下的最佳倾角。该框架利用来自美国184个地点、为期六年的高分辨率(5分钟间隔)卫星辐照度数据。与以往研究不同,本研究结合了精细的时间分辨率数据、广泛的地理覆盖范围,并对十三种机器学习模型进行了比较评估,以优化三种调整策略(年度、季节性和月度)下的最佳倾角。倾斜表面上的辐照度采用各向同性天空模型进行估算,从而高效模拟了从0到1、以0.1为增量变化的不同反照率条件下组件正面与背面的受光情况。所得到的最佳倾角被用作训练十三种机器学习(ML)模型的模拟目标值,输入特征包括地理位置坐标和地表反照率。模型的准确性在美国另外15个独立城市中进行了验证。结果表明,在年度倾角预测中,采用高斯核的支持向量机(SVMG)和k近邻回归(KNN)分别为单面和双面系统表现最优的模型,其角度预测的绝对误差分别低于1.0°(单面)和1.7°(双面),且辐照度差异可忽略不计(单面低于0.01%,双面低于0.02%)。进一步分析显示,双面组件所获得的能量增益强烈依赖于地面反射率(即反照率),增益最高可达80%以上,且最佳组件朝向随地理位置纬度的变化呈现出细微差异。所提出的机器学习框架为固定式及周期性可调光伏系统的倾角优化提供了一种准确、可扩展且计算高效的解决方案。

English Abstract

Abstract This study introduces a novel machine learning-based framework to predict optimal tilt angles for monofacial and bifacial photovoltaic systems, using six years of high-resolution (5 min interval) satellite irradiance data from 184 U.S. locations. Unlike previous work, it combines fine temporal data, wide geographic coverage, and a comparative evaluation of thirteen machine learning models to optimize tilt angles under three adjustment strategies: yearly, seasonal, and monthly. The irradiance on tilted surfaces was estimated using the isotropic sky model, to efficiently simulate the front- and rear-side exposure across a wide range of albedo values varying from 0 to 1 with 0.1 increments. The resulting tilt angles served as simulated optimal angles for training thirteen machine learning (ML) models using location coordinates and albedo as input features. Model accuracy was validated at 15 independent U.S. cities. For yearly prediction, Support Vector Machine with Gaussian Kernel (SVMG) and k-Nearest Neighbors Regression (KNN) emerged as the top-performing models for monofacial and bifacial systems, respectively, yielding angular prediction absolute errors below 1.0°for monofacial and 1.7°for bifacial, and negligible irradiation discrepancies (less than 0.01% for monofacial and 0.02% for bifacial). Further analysis showed that the amount of energy gained by bifacial panels is strongly dependent on the reflectivity of the ground (albedo), reaching more than 80%, and that the best panel orientation varies in subtle ways depending on the location’s latitude. The proposed ML framework offers an accurate, scalable, and computationally efficient solution for PV tilt optimization in both fixed and periodically adjustable systems.
S

SunView 深度解读

该机器学习倾角优化技术对阳光电源SG系列光伏逆变器和iSolarCloud平台具有重要应用价值。研究针对单双面组件的精准倾角预测(误差<1.7°)可集成至智能运维系统,结合MPPT优化算法实现发电量最大化。双面组件在高反射率地面可增益超80%的发现,为PowerTitan储能系统的容量配置提供数据支撑。建议将该ML框架嵌入iSolarCloud平台,根据地理坐标和地表反射率自动推荐最优倾角调整策略(年度/季度/月度),提升固定及可调支架系统的全生命周期收益,强化阳光电源在智能光伏电站解决方案的技术领先性。