← 返回
光伏发电技术 储能系统 机器学习 ★ 5.0

基于可解释机器学习的被动式建筑一体化光伏幕墙多性能预测与优化

Multi-performance prediction and optimization for building-integrated photovoltaics facades with passive design via explainable machine learning

作者 Han Qiuab1 · Zhichao Maa1 · Yaping Huc · Dandan Wuc · Lan Zhang · Guangtao Hec
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 301 卷
技术分类 光伏发电技术
技术标签 储能系统 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Explainable ML-based predictive models for BIPV façades with passive strategies.
语言:

中文摘要

摘要 建筑一体化光伏(BIPV)幕墙结合被动式设计是一种应对气候变化与能源挑战的低碳、可持续性建筑策略。鉴于前期设计决策对项目成果具有显著影响,本研究聚焦于开发针对三项关键性能指标的快速评估方法:采光可用性、太阳能发电量以及建筑能效。为此,我们通过建筑性能模拟与标签分类构建了适用于上海地区的专用数据集。基于该数据集,建立了四个关键指标的预测模型:空间日光自治率(sDA)、太阳辐射量、采暖年均能耗强度(EUI_heat)和制冷年均能耗强度(EUI_cool)。通过对比随机森林(Random Forest)与XGBoost算法,发现两种模型均表现出优异性能(F1分数分别为:sDA 0.856,太阳辐射 0.808,EUI_cool 0.878,EUI_heat 0.924)。值得注意的是,基于SHAP的可解释性分析不仅通过与相关性结果的一致性验证了模型的可靠性,还揭示了不同设计参数的相对重要性。此外,当应用于气候条件相似的其他城市时,模型仍保持较高的预测精度,显示出其在区域范围内的实用价值。所提出的方法将计算时间从原有的106–239小时大幅缩短至60.6小时。经优化后,最优方案可实现由光伏发电提供的制冷与采暖能耗占比达25%至48%。本研究为建筑师提供了一种可用于评估被动式设计下BIPV幕墙多性能指标的预测工具,支持可持续建筑设计决策。

English Abstract

Abstract Building-integrated photovoltaic (BIPV) facades with passive design represent a low-carbon, sustainable architectural strategy for addressing climate change and energy challenges. Given that early-stage design decisions significantly impact project outcomes, this study focused on developing rapid assessment methods for three key performance aspects: daylight availability, solar energy generation, and building energy efficiency. To achieve this, we established Shanghai-specific dataset through building performance simulations and label classification. Using this dataset, we developed predictive models for four critical metrics: spatial daylight autonomy (sDA), solar radiation, EUI heat , EUI cool . By comparing Random Forest and XGBoost algorithms, we found that both achieved strong performance (F1 scores: 0.856 for sDA, 0.808 for solar radiation, 0.878 for EUI cool , and 0.924 for EUI heat ). Notably, SHAP-based explainability analysis not only validated the models’ reliability by aligning with correlation results but also revealed the relative importance of different design parameters. Furthermore, when tested in other cities with similar climates, the models maintained high accuracy, demonstrating their practical value for regional applications. The proposed method reduces the computational time from 106–239 h to 60.6 h. After optimization, the optimal solution can achieve 25 % to 48 % of cooling and heating energy supplied by photovoltaic power generation. This research provides architects with a predictive tool to assess multiple performance metrics of BIPV façade with passive design, supporting sustainable design decisions.
S

SunView 深度解读

该BIPV被动式设计多性能预测技术对阳光电源SG系列光伏逆变器与储能系统集成具有重要价值。研究实现光伏发电可满足25-48%冷热负荷,契合我司PowerTitan储能系统的能量管理优化场景。机器学习快速评估方法可集成至iSolarCloud平台,为建筑光伏项目提供设计阶段的发电量与负荷匹配预测,优化MPPT控制策略与储能配置方案,提升建筑能源自给率,推动光储建筑一体化解决方案落地。