← 返回
选择有效的NWP集成方法以实现基于深度学习的光伏功率预测
Selecting effective NWP integration approaches for PV power forecasting with deep learning
| 作者 | Dayin Chenab · Xiaodan Shie · Mingkun Jiang · Shibo Zhuab · Haoran Zhang · Dongxiao Zhangc · Yuntian Chenc · Jinyue Yan |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Five strategies are proposed for integrating NWP data into photovoltaic forecasting models. |
语言:
中文摘要
准确预测光伏发电功率对于可靠的能源调度和系统运行至关重要。尽管深度学习模型在该领域已展现出强大的能力,但如何有效地将数值天气预报(NWP)数据融入此类模型仍然是一个具有挑战性的问题。在本研究中,我们提出并系统评估了五种不同的NWP集成策略——分别称为方法1至方法5——以提升光伏发电预测性能。这些方法在14种代表性模型和四个预测时间范围(4、24、72和144步)上进行了测试,涵盖了短期、中期和长期预测场景。实验结果表明,每种集成方法的有效性取决于模型结构和预测时间范围。特别是,在短期预测中,方法5与LSTM等循环神经网络模型表现出较强的兼容性;而在长期预测设置下,方法4在基于Transformer的模型上表现最佳。此外,方法1和方法2在多种模型和任务中均展现出稳定可靠的性能。这些发现为选择适用于光伏发电预测应用的NWP集成策略提供了实用的指导依据。
English Abstract
Abstract Accurate forecasting of photovoltaic (PV) power is crucial for reliable energy scheduling and system operation. While deep learning models have demonstrated strong capabilities in this domain, effectively integrating numerical weather prediction (NWP) data into such models remains a challenging problem. In this study, we propose and systematically evaluate five distinct NWP integration strategies — referred to as Method 1 through Method 5 — for enhancing PV forecasting performance. These methods are tested across 14 representative models and four forecasting horizons (4, 24, 72, and 144 steps), covering short-, mid-, and long-term scenarios. Experimental results reveal that the effectiveness of each integration method depends on the model architecture and forecasting horizon. In particular, Method 5 shows strong compatibility with recurrent models such as LSTM in short-term forecasting, while Method 4 performs best with Transformer-based models in long-term settings. Additionally, Method 1 and Method 2 demonstrate consistently reliable performance across various models and tasks. These findings provide practical insights into selecting suitable NWP integration strategies for PV power forecasting applications.
S
SunView 深度解读
该研究系统评估了五种NWP数值天气预报与深度学习模型的集成策略,对阳光电源iSolarCloud智慧运维平台的光伏功率预测模块具有直接应用价值。研究发现Method 5适配LSTM短期预测、Method 4适配Transformer长期预测的结论,可优化SG系列逆变器的发电预测算法。精准的多时间尺度功率预测能提升ST系列储能变流器的充放电调度策略,增强PowerTitan储能系统的电网调度可靠性,并为光储充一体化场景提供更优的能量管理决策支持,降低弃光率并提高系统经济性。