← 返回
基于Kolmogorov-Arnold网络与timeGAN混合架构并结合考虑运行机制的数据增强的可解释光伏功率建模
Interpretable photovoltaic power modeling via Kolmogorov-Arnold network and timeGAN hybrid architecture with regime-aware data augmentation
| 作者 | Yuqiao Pan · Zhaocai Wang · Zuowen Tan · Zhihua Zhu |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 302 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 GaN器件 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Introduce abundant and diverse external natural data. |
语言:
中文摘要
摘要 光伏(PV)发电的波动性和随机性为其大规模并入电力系统带来了显著挑战,限制了太阳能作为一种清洁能源的充分开发利用。为解决这一问题,本研究提出了一种混合建模框架,协同融合数据预处理、特征扩展与先进的深度学习架构。首先,采用集成变分自编码器(VAE)进行特征选择与降维,并对数据进行季节性和昼夜模式划分;随后,利用 Ordering Points to Identify the Clustering Structure(OPTICS)算法识别内在的运行机制(regime),并通过TimeGAN生成合成时间序列特征以增强数据多样性。本研究的核心创新在于提出一种双模型架构,首次将Transformer与Kolmogorov-Arnold网络(KAN)相结合,构建混合建模范式。通过与十种基准模型(包括五种独立的深度学习模型及其KAN增强版本)的对比实验,验证了所提方法的优越性。相较于独立的Transformer模型,Transformer-KAN混合模型在RMSE和MAE上分别降低了29.51%和12.0%,同时保持了良好的计算效率。本研究为光伏功率建模提供了一种可解释的人工智能解决方案,能够有效支持可再生能源利用的优化。
English Abstract
Abstract The variable and stochastic nature of photovoltaic (PV) power generation poses significant challenges to its large-scale integration into power grids, limiting the full exploitation of solar energy as a clean power source. To address this issue, this study proposes a hybrid modeling framework that synergistically combines data preprocessing, feature expansion, and advanced deep learning architectures. First, the integrate Variational Autoencoder (VAE) is used for feature selection and dimensionality reduction, followed by seasonal and diurnal pattern division. The Ordering Points to Identify the Clustering Structure (OPTICS) algorithm is employed to identify intrinsic operational regimes, while TimeGAN is adopted to augment data diversity through synthetic generation of temporal features. The core innovation resides in the adoption of a dual-model architecture. For the first time, this architecture integrates the Transformer with the Kolmogorov-Arnold Network (KAN) to establish a hybrid framework. Comparative experiments involving ten benchmark models, including five standalone deep learning models and their KAN-enhanced variants, demonstrate the superiority of the proposed approach. The Transformer-KAN hybrid achieves 29.51 % and 12.0 % reductions in RMSE and MAE respectively compared to the standalone Transformer, while maintaining computational efficiency. This study provides an interpretable artificial intelligence solution for PV modeling that can effectively support renewable energy utilization optimization.
S
SunView 深度解读
该Transformer-KAN混合架构对阳光电源SG系列光伏逆变器及iSolarCloud平台具有重要应用价值。通过VAE特征降维与TimeGAN数据增强,可显著提升光伏功率预测精度(RMSE降低29.51%),优化MPPT算法动态响应。regime-aware聚类识别可增强ST系列储能PCS的充放电策略,实现源荷精准匹配。该可解释性AI框架可集成至预测性维护系统,提升电站运维智能化水平,支撑GFM/GFL控制策略优化,助力大规模新能源并网稳定性。