← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

基于天空图像的辐照度估计深度学习方法基准测试及其在视频预测型辐照度临近预报中的应用

Benchmarking deep learning methods for irradiance estimation from sky images with applications to video prediction-based irradiance nowcasting

作者 Lorenzo F.C.Varaschi · Danilo Silva
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 302 卷
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Deep residual networks improve GHI estimation under cloudy skies.
语言:

中文摘要

摘要 为应对光伏发电能源带来的高度不确定性,越来越多的研究聚焦于短期太阳能预测(即临近预报)。大多数此类研究采用基于深度学习的模型,通过输入的一段天空图像序列直接预测太阳辐照度或光伏功率值。然而,近年来生成模型的发展催生了一类将临近预报问题分解为两个子问题的新方法:(1)未来事件预测,即生成未来的天空图像;(2)太阳辐照度或光伏功率估计,即从单张图像中预测对应的数值。SkyGPT 模型便是其中一例,其性能提升潜力在估计组件中远大于生成组件。因此,本文聚焦于太阳辐照度估计问题,在广泛使用的 Folsom、SIRTA 和 NREL 数据集上对多种深度学习架构进行了全面的基准测试。此外,我们针对不同的训练配置和数据处理技术开展了消融实验,包括训练过程中目标变量的选择,以及图像与辐照度测量之间时间戳对齐方式的调整。特别地,我们指出了 Folsom 数据集中天空图像时间戳可能存在的一项潜在误差,并提出了一种可能的修正方案。通过综合利用三个数据集,我们验证了所得结论在不同太阳能观测站之间具有良好的一致性。最后,我们将最优的辐照度估计模型与一个视频预测模型相结合,在 SIRTA 数据集上取得了当前最先进的预测结果。

English Abstract

Abstract To address the high levels of uncertainty associated with photovoltaic energy, an increasing number of studies focusing on short-term solar forecasting (i.e. nowcasting) have been published. Most of these studies use deep-learning-based models to directly forecast a solar irradiance or photovoltaic power value given an input sequence of sky images. Recently, however, advances in generative modeling have led to approaches that divide the nowcasting problem into two sub-problems: (1) future event prediction, i.e. generating future sky images; and (2) solar irradiance or photovoltaic power estimation, i.e. predicting the concurrent value from a single image. One such approach is the SkyGPT model, whose potential for improvement is shown to be much larger in the estimation component than in the generative component. Thus, in this paper, we focus on the solar irradiance estimation problem and conduct an extensive benchmark of deep learning architectures across the widely-used Folsom, SIRTA and NREL datasets. Moreover, we perform ablation experiments on different training configurations and data processing techniques, including the choice of the target variable used for training and adjustments of the timestamp alignment between images and irradiance measurements. In particular, we draw attention to a potential error associated with the sky image timestamps in the Folsom dataset and suggest a possible fix. By leveraging the three datasets, we demonstrate that our findings are consistent across different solar stations. Finally, we combine our best irradiance estimation model with a video prediction model and obtain state-of-the-art results on the SIRTA dataset.
S

SunView 深度解读

该深度学习辐照度预测技术对阳光电源iSolarCloud智慧运维平台及ST储能系统具有重要应用价值。通过天空图像实现短期辐照度预测可优化光储协同控制策略:提升SG逆变器MPPT算法预判能力,改善PowerTitan储能系统充放电调度精度,降低光伏出力波动对电网的冲击。该双阶段预测方法(图像生成+辐照度估算)可集成至预测性维护系统,结合GFM控制技术实现更精准的功率预测与能量管理,特别适用于大型地面电站及工商业储能场景的智能化升级。