← 返回
铪基铁电材料在先进计算中的研究进展
A review of hafnium-based ferroelectrics for advanced computing
| 作者 | Xiangdong Xu · Zhongzhong Luo · Huabin Sun · Yong Xu · Li Gao · Zhihao Yu |
| 期刊 | Solid-State Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 225 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | This paper reviews the advantages challenges and progress of hafnium-based [ferroelectric](https://www.sciencedirect.com/topics/materials-science/ferroelectric-material "Learn more about ferroelectric from ScienceDirect's AI-generated Topic Pages") devices in advanced computing. |
语言:
中文摘要
摘要 在以数据为中心的计算时代,数据量预计将呈指数级增长。传统计算机中存储单元与处理单元的物理分离导致在数据计算和存储过程中存在大量不必要的能量损耗和时间延迟。基于铁电材料的器件具有数据存储与计算一体化的优势。然而,由于传统铁电材料(如钙钛矿类材料)与互补金属氧化物半导体(CMOS)技术不兼容且可扩展性较差,限制了其在先进计算领域的研究进展。近年来,对基于铪(Hf)的铁电材料的研究与创新重新激发了该领域的兴趣。铪基铁电材料固有的CMOS兼容性、高矫顽场强(Ec)以及高能带间隙使其器件非常适合用于数据存储。此外,基于铪基铁电材料的负电容场效应晶体管(NCFET)可作为典型的逻辑计算器件加以利用。同时,通过调控铪基铁电薄膜中可控的多畴极化翻转行为,可以精确模拟生物突触的多级权重,这表明铪基铁电材料在神经形态计算领域也具有广泛的应用优势。然而,铪基铁电材料在这些先进计算领域中的基本作用机制及相关研究进展尚未得到系统的总结与梳理。本文综述了铪基铁电材料在先进计算领域的最新研究成果,回顾了铁电材料的发展历史以及铪基铁电材料所具备的多种优势,重点阐述了基于铪基铁电材料的逻辑与存储器件的工作原理、研究进展及其电路应用。此外,本文还介绍了神经形态计算的基本概念,特别讨论了铪基铁电神经形态器件的研究进展以及硬件神经网络的电路应用。最后,对该领域的发展前景进行了积极展望。
English Abstract
Abstract In the era of data-centric computing, the quantity of data is expected to increase exponentially. The physical separation of memory and processing units in traditional computers results in a considerable amount of unnecessary energy loss and time delay in the process of data calculation and storage. Devices based on ferroelectric materials possess the advantage of integrated data storage and computing. Nevertheless, research in the field of advanced computing has been constrained due to the incompatibility of traditional ferroelectrics (e.g., perovskites) with complementary metal oxide semiconductor (CMOS) technology and poor scalability. In recent years, research and innovation in hafnium (Hf)-based ferroelectrics have reignited interest in this field. The inherent CMOS compatibility, high coercive field (E c ), and high energy band gap of Hf-based ferroelectrics make their devices highly suitable for data storage. Moreover, the negative capacitance field-effect transistor (NCFET) based on Hf-based ferroelectrics can be utilized as a representative logic computing device. In addition, the multi-level weights of biological synapses can be accurately simulated by adjusting the controllable multi-domain polarization switching in Hf-based ferroelectric films, which indicates that Hf-based ferroelectrics will also have general advantages in the field of neuromorphic computing. However, the basic mechanisms and research progress of Hf-based ferroelectrics in these advanced computing fields have not been systematically summarized and sorted out. In this paper, we summarize the latest research results of Hf-based ferroelectrics in advanced computing. We review the history of ferroelectric materials and the numerous advantages of Hf-based ferroelectrics, focusing on the working principles, research progress, and circuit applications of Hf-based ferroelectric logic and memory devices. Additionally, we review the basic concepts of neuromorphic computing, especially discussing the research progress of Hf-based ferroelectric neuromorphic devices and the circuit applications of hardware neural networks. Finally, we made a positive outlook on this field.
S
SunView 深度解读
铪基铁电材料的CMOS兼容性、高能隙和多态存储特性,为阳光电源储能系统PCS控制器和iSolarCloud平台的边缘计算单元提供了创新方向。其负电容效应可优化SiC/GaN功率器件的栅极驱动电路,降低开关损耗;神经形态计算能力可增强ST系列储能变流器的实时负荷预测和VSG自适应控制算法;非易失性存储特性有助于提升充电桩和逆变器的故障诊断与快速重启能力,推动智能运维系统向本地化AI决策演进。