← 返回
一步式包含变异的紧凑建模方法结合条件变分自编码器
One-step variation included compact modeling with conditional variational autoencoder
语言:
中文摘要
高效且精确的变异建模是电路评估中的关键环节,能够复现半导体器件的实际电学行为。传统的变异建模通常包含两个步骤:首先对基本电学特性进行紧凑建模,然后对MOSFET制造过程中引入的变异源(主要是结构参数和掺杂参数)进行子模型建模。这一冗长的过程导致器件生产与快速电路分析之间存在脱节。为了提高建模效率,本文提出了一种基于机器学习的一次性包含变异的紧凑建模方法。该方法利用条件变分自编码器(cVAE),直接构建包含变异的电流响应,无需单独的子模型建模步骤,因为cVAE模型能够自动提取变异源。通过与基于BSIM-CMG模型蒙特卡洛仿真生成的数据集先验分布进行对比,cVAE生成的I-V曲线在各项品质因数(FoMs)上的归一化变异精度均超过0.9。将该模型集成至SPICE仿真后,电路级变异建模同样表现出高精度,进一步表明了所提模型的潜力。
English Abstract
Abstract Efficient and accurate variation modeling serves as a critical part in circuit evaluation, which can reproduce actual electrical behavior of semiconductor devices. Conventional variation modeling usually consists of two steps: compact modeling the basic electrical properties and sub-modeling the variation sources introduced in MOSFET manufacturing process, mostly structural and doping parameters. This lengthy process results in a gap between device production and rapid circuit analysis. In order to improve modeling efficiency, in this work, we propose a one-step variation-included compact modeling approach leveraging machine learning. Utilizing conditional variational autoencoder (cVAE), currents with variation are directly constructed without the sub-modeling step, as variation sources of the cVAE model are automatically extracted. Benchmark against prior distribution of dataset generated by Monte Carlo simulation of BSIM-CMG, normalized variation in figure of merits (FoMs) of cVAE generated I-V curves are all above 0.9. After implementing the model in SPICE, high accuracy in circuit-level variation modeling also indicates the potential of the proposed model.
S
SunView 深度解读
该基于条件变分自编码器的一步式变异建模技术对阳光电源SiC/GaN功率器件开发具有重要价值。传统MOSFET工艺变异建模需分步进行紧凑建模和子模型构建,周期长。该方法可直接生成含工艺变异的I-V特性曲线,显著缩短ST系列PCS和SG逆变器中功率器件的SPICE仿真建模周期。特别适用于三电平拓扑中SiC器件的快速电路级变异分析,提升新一代PowerTitan储能系统和充电桩产品的器件选型效率与可靠性评估准确度,加速从器件生产到电路验证的迭代流程。