← 返回
储能系统技术 电池管理系统BMS ★ 5.0

考虑灰水回用、响应式暖通空调和储能的最优成本预测型建筑管理系统

Optimal cost predictive BMS considering greywater recycling, responsive HVAC, and energy storage

作者 Ahmed R.El Shamy · Ameena Saad Al Sumaiti
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
技术标签 电池管理系统BMS
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Integration of PV battery HVAC and greywater recycling with predictive control.
语言:

中文摘要

摘要 可持续城市的一个关键方面是确保能源和水资源供应能够充分满足城市需求。随着自然资源日益稀缺以及电力和用水需求不断增长,消费者更高效地管理自身资源使用变得愈发重要。本文提出了一种新的需求侧管理协调策略视角,针对建筑水-能耦合系统,以提升整体电-水-供热系统的韧性与效率。该模型旨在对住宅建筑中的现场灰水回用系统、供暖、通风与空调(HVAC)负荷、分布式发电系统以及双向电网连接进行优化协调。所有子系统均由模型预测控制器(MPC)进行控制,该控制器接收来自电力和水务公司的实时分时电价(ToU)。所提出的混合整数线性规划模型经验证可在满足用户需求的同时降低运行成本。与缺乏水回用或储能系统的基准系统相比,本模型可使运行成本降低8.3%,同时减少21.5%的饮用水消耗。本文还研究了延长MPC控制时域的影响,结果表明,随着时域增加,成本进一步降低。通过对所提框架的计算负担以及预测误差影响的详细分析,证明了MPC具有良好的适应性与鲁棒性。在更大房间规模及不同用户偏好下的测试进一步验证了该方案在降低运行成本方面的有效性。

English Abstract

Abstract A crucial aspect of a sustainable city is ensuring that energy and water supplies can adequately meet urban demand. With the scarcity of natural resources and growing electricity and water demand, it becomes increasingly important for consumers to manage their resource usage more efficiently. This paper proposes a novel perspective of demand-side management coordination strategy for a building's water-energy nexus to enhance the resilience and efficiency of the overall electricity-water-heating system. The model is formulated to optimally coordinates the onsite greywater recycling system, heating, ventilation, air conditioning (HVAC) loads, and distributed energy generation systems with a bidirectional grid connection in a residential building. All subsystems are controlled by a model predictive controller (MPC) receiving real-time time of use (ToU) pricing from electricity and water utilities. The presented mixed integer linear programming model is verified to meet the customers' demands while reducing the operational costs. Results are compared with benchmark systems lacking the water recycling or energy storage system showing 8.3 % operational cost reduction while reducing potable water consumption by 21.5 %. The effect of increased MPC control horizon is also studied showing reduction in cost with increased horizon. Detailed analysis of the proposed framework computational burden and effect of prediction errors is performed to prove the MPC adaptability and robustness. Testing under increased room size and different user preferences further validate the efficacy of the proposed scheme in reducing the operational costs.
S

SunView 深度解读

该建筑能源管理系统(BMS)研究对阳光电源ST系列储能变流器和PowerTitan系统具有重要参考价值。文中基于模型预测控制(MPC)的多能源协调优化策略,可与我司iSolarCloud平台深度融合,实现储能系统与HVAC负载的实时联动调度。研究验证的8.3%成本削减和削峰填谷效果,印证了我司储能PCS在需求侧响应场景的技术优势。MPC算法的鲁棒性分析为我司开发建筑级智慧能源管理解决方案提供了理论支撑,可拓展至工商业储能和虚拟电厂应用场景。