← 返回
光伏发电技术 储能系统 深度学习 ★ 5.0

一种基于演化多分位数长短期记忆神经网络的超短期光伏功率概率预测混合模型

A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power

作者 Jianhua Zhu · Yaoyao He
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 光伏发电技术
技术标签 储能系统 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Ultra-short-term PV power probabilistic forecasting with a novel hybrid model.
语言:

中文摘要

摘要 概率预测在消除光伏发电不确定性方面具有极其重要的作用。由于具备强大的泛化能力,分位数回归长短期记忆神经网络(QRLSTM)被广泛认为是光伏发电概率预测中颇具前景的方法。然而,这类模型对每个分位数单独进行训练,忽略了不同分位数之间的相关性与单调性约束,且多次训练导致计算复杂度过高。此外,由分位数回归产生的不可微分的分位损失函数对优化算法提出了较高要求。为解决上述问题,本文提出一种基于演化分布混沌粒子群优化算法(EDCPSO)优化的多分位数LSTM(MQLSTM)模型,以实现高质量的光伏发电概率预测。MQLSTM是一种多输出网络结构,能够同时输出所有分位数估计值,并采用包含全部分位数得分及非交叉约束的损失函数来指导模型训练。该方法不仅提高了分位数估计的质量与合理性,还降低了计算难度。随后,从进化计算的角度出发,将MQLSTM中各连接层的权重参数视为决策变量,将概率预测问题转化为优化问题,并提出EDCPSO算法以解决模型训练难题。该算法根据进化状态实施有针对性的分布式混沌策略,从而提升收敛速度和搜索能力。所提模型在真实案例中的实验结果验证了其优越性能。

English Abstract

Abstract Probabilistic forecasting is extremely crucial in eliminating uncertainty in photovoltaic (PV) power generation. Quantile regression long and short-term memory neural network (QRLSTM) is widely recognized as promising methods for PV power probabilistic forecasting due to their strong generalization ability. However, these models train the model for each quantile individually, which lacks consideration of the correlation and monotonicity between quantiles, and multiple training leads to excessive computational complexity. Furthermore, the non-differentiable pinball loss function generated by QR places significant demands on the optimization algorithms. To address these issues, this paper proposes an evolutive distributed chaotic particle swarm optimization (EDCPSO)-optimized multi-quantile LSTM (MQLSTM) to achieve high-quality probabilistic PV power prediction. MQLSTM is a multi-output network structure that simultaneously outputs all quantile estimates and adopts a loss function with all quantile scores and non-crossing constraints to guide the training of the model. This approach not only improves the quality and reasonableness of quantile estimations , but also reduces computational difficulty. Then, from the perspective of evolutionary computation, considering the weight parameters of each connection layer in MQLSTM as decision variables, we convert the probabilistic forecasting into an optimization problem and propose a EDCPSO to solve the training difficulty. It implements a targeted distributed chaos strategy based on the evolutionary state to improve convergence speed and search capability. The proposed model is tested to be superior in real cases.
S

SunView 深度解读

该超短期光伏功率概率预测技术对阳光电源SG系列逆变器及iSolarCloud平台具有重要应用价值。MQLSTM多分位点神经网络可集成至智能运维系统,实现光伏出力的概率区间预测,优化MPPT控制策略。结合ST系列储能变流器,可基于预测置信区间动态调整充放电计划,提升能量管理精度。EDCPSO优化算法的快速收敛特性适配边缘计算场景,可嵌入逆变器DSP实现实时预测。该方法解决分位点交叉问题,为PowerTitan储能系统的调度决策提供高可信度支撑,降低弃光率并提升电网友好性。