← 返回
风电变流技术 SiC器件 ★ 5.0

解决风速预测中的少样本问题:一种基于分解与学习集成的新型迁移策略

Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble

作者 Yang Suna1 · Zhirui Tianb1
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 风电变流技术
技术标签 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Proposed an accurate wind speed prediction transfer strategy for few-shot problems.
语言:

中文摘要

摘要 随着可再生能源需求的持续增长,全球正在建设新的风电场。然而,由于新设备的风速数据有限,直接对新风机进行风速预测变得极具挑战性。为解决这一问题,本文提出了一种针对少样本问题的快速迁移策略。该迁移框架分为两个阶段构建。第一阶段是在大样本数据上对模型进行预训练。首先,采用动态时间规整(Dynamic Time Warping, DTW)方法选择与目标域最相似的数据集;然后,利用变分模态分解(variational mode decomposition, VMD)将数据集分解为不同的模态,并基于样本熵(sample entropy, SE)理论将具有相似复杂度的模态分量重新组合成新的分量;对于每个新分量,从模型选择池中根据定制的评估标准选取最适合的深度学习结构;最后,采用学习集成方法融合各个模型的预测结果,得到源域的最终预测值。与传统的线性集成方法相比,学习集成能够捕捉非线性特征,显著提高预测精度。第二阶段是将预训练好的模型迁移到目标域。首先将各分量对应的预测模型直接在目标域上进行测试,并根据测试结果决定是否进行微调;若有任何模型需要微调,则学习集成模型也必须同步进行微调。本文使用澳大利亚昆士兰州某风电场的风速数据模拟了整个迁移学习过程。实验结果表明,所提出的策略能够以极低的迁移成本有效解决风速预测中的少样本问题。通过使用来自四个不同地点的数据集,验证了该策略的鲁棒性和泛化能力。

English Abstract

Abstract With the continuous growth in demand for renewable energy , new wind power farms are being built globally. However, due to the limited availability of wind speed data for new equipment, directly forecasting wind speed data for new turbines has become extremely challenging. To address this issue, this paper proposes a rapid transfer strategy for the few-shot problem. The transfer framework is constructed in two stages. The first stage involves pre-training the model on large sample data. Initially, Dynamic Time Warping (DTW) is used to select datasets most similar to the target domain. Then, variational mode decomposition (VMD) is employed to divide the dataset into different modes, and the modal components with similar complexity are reassembled into new components based on sample entropy (SE) theory. For each new component, the most suitable deep learning structure is selected from a model selection pool using customized evaluation criteria. Finally, the learning ensemble method combines the prediction results of each model to obtain the final prediction for the source domain. Compared with traditional linear ensemble methods, the learning ensemble can capture nonlinear features , significantly improving prediction accuracy. The second stage involves transferring the pre-trained model to the target domain. Initially, the prediction models for each component are tested directly on the target domain, and based on the results, a decision is made on whether to fine-tune. If any models require fine-tuning, the learning ensemble must also be fine-tuned simultaneously. We simulate the entire transfer learning process using wind speed data from a wind farm in Queensland. Experimental results show that the proposed strategy effectively addresses the few-shot problem in wind speed prediction with minimal transfer cost. The robustness and generalization of the proposed strategy are verified by using four sets of data from different locations.
S

SunView 深度解读

该迁移学习风速预测技术对阳光电源风电变流器及储能系统具有重要应用价值。通过动态时间规整和变分模态分解实现小样本快速建模,可直接应用于ST系列储能变流器的功率预测模块,优化充放电策略。学习集成方法捕获非线性特征的能力,能提升iSolarCloud平台预测性维护精度,特别适用于新建风储项目的快速部署。该策略的迁移学习框架可扩展至光伏功率预测,为SG逆变器MPPT算法提供前瞻性优化依据,降低新站点调试成本,增强系统鲁棒性。