← 返回
一种用于锂离子电池退化轨迹预测的合成数据生成方法及进化型Transformer模型
A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries
| 作者 | Haiyan Jin · Rui Ru · Lei Cai · Jinhao Meng · Bin Wang · Jichang Peng · Shengxiang Yang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 电池管理系统BMS |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A synthetic data method based on conditional generative adversarial network (CGAN) is proposed. |
语言:
中文摘要
摘要 在锂离子电池使用的早期阶段识别其长期退化行为,对于电池管理系统(BMS)在实际应用中有效维护电池至关重要。然而,由于电池在生产和运行条件方面存在差异,该过程面临较大挑战。近年来,已有研究经验证明,数据驱动方法在处理退化预测问题上具有良好的应用前景。然而,合适数据的缺乏仍是影响预测最终性能的主要障碍。此外,预测结果还受到预测器设置的影响,包括神经网络结构及其超参数的设定。实现该过程自动化的挑战至今仍未得到解决。在本研究中,我们提出了一种新颖的退化轨迹预测框架。首先,通过条件生成对抗网络(CGAN)生成合成数据,以表征电池在早期阶段的退化特性,并利用扩充的数据缓解数据不足的问题。其次,提供了一种评估合成数据质量的评价方法。此外,基于多样性机制提出了一种筛选方法,进一步滤除合成数据中的冗余信息。上述两个子过程旨在提升合成数据的质量。最后,将合成数据与真实数据混合后用于训练Transformer模型,该模型的结构和超参数通过一个进化框架实现自动配置。实验结果表明,与现有方法相比,所提出的方法能够实现更准确的预测,且其最优配置可在无需人工干预的情况下自动完成。
English Abstract
Abstract Identifying the long-term degradation of lithium-ion batteries in their early usage phase is crucial for the battery management system (BMS) to properly maintain the battery for practical use. Nevertheless, this procedure is challenging due to variations in the production and operating conditions of the battery. In recent years, it has been empirically proven that the data-driven method is a promising solution for handling the prediction of degradation. However, the lack of appropriate data remains the main obstacle that impacts the ultimate performance of the prediction. Furthermore, the prediction is also influenced by the setup of the predictor, which covers the structure of neural networks and their hyperparameters. The challenge of automating this process remains unresolved. In this study, we propose a novel degradation trajectory prediction framework. First, synthetic data is generated via a conditional generative adversarial network (CGAN), providing the characterization of the battery’s degradation at an early stage and utilizing the argument data to alleviate the issue of insufficient data. Second, an evaluation method to evaluate the quality of the synthetic data is also provided. In addition, a selection method is proposed based on the diversity mechanism to further filter out the redundancy of synthetic data. These two sub-processes aim to promote the quality of the synthetic data. Finally, the synthetic data hybrid with real values is used for the training of a transformer model, whose architecture and hyper-parameters are automatically configured via an evolutionary framework. The experimental results show that the proposed method can achieve accurate predictions compared to its rivals, and its best configuration can be automatically configured without hand-crafted efforts.
S
SunView 深度解读
该锂电池退化预测技术对阳光电源储能系统具有重要价值。通过CGAN合成数据和Transformer模型可显著提升ST系列PCS及PowerTitan储能系统中BMS的预测精度,解决早期退化识别难题。自动化超参数优化框架可集成至iSolarCloud平台,实现储能电站电池全生命周期健康管理和预测性维护,延长电池寿命,降低运维成本。该方法亦可应用于充电桩电池监测,提升EV充电解决方案的智能化水平。