← 返回
使用多通道单维卷积神经网络模型评估高密度城市区域的建筑一体化光伏潜力
Assessing building-integrated photovoltaic potential in dense urban areas using a multi-channel single-dimensional convolutional neural network model
| 作者 | Xiaotian Geng · Senhong Cai · Zhonghua Gou |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Novel use of CNNs and urban point cloud modeling for BIPV capacity prediction in urban areas. |
语言:
中文摘要
摘要 评估建筑一体化光伏(BIPV)潜力对于太阳能的全面推广与部署具有重要意义。传统模型大多依赖形态学参数进行光伏潜力评估,在高密度城市区域中存在对城市形态主观认知强、泛化能力差等挑战。本研究采用卷积神经网络(CNN)进行三维建模,以评估中大规模城市尺度下的BIPV潜力,提出了一种多维单通道一维CNN模型框架。该模型结合高斯混合模型与建筑物点云数据,提取建筑窗墙比,从而增强建筑群点云中的个体特征;同时利用三维物理模型提取建筑地理朝向信息,并通过空间连通性整合点云分布,以解决点云卷积旋转不变性导致的地理朝向缺失问题;此外,采用三维模型的表面积作为表面点云采样的权重,并结合法向量估计保留建筑实体信息,解决了点云卷积无序性的问题。该建模框架能够利用城市点云数据并预测城市街区边界,实现对城市街区光伏潜力的精确预测。以墨尔本市为案例进行研究,结果表明,相较于传统的基于形态学参数的预测模型,该模型表现出更优的性能,在75个训练集中均方根误差为2415.548 kWh/年,R²得分为0.937。所提出的建模框架可实现多尺度BIPV潜力的预测,有助于BIPV的分阶段推广以及有效能源部署策略的制定。本研究为可持续城市发展背景下中大规模复杂场景中的城市建筑能源建模、深度学习与能源预测提供了新的研究视角。
English Abstract
Abstract Assessing BIPV (Building Integrated Photovoltaic) potential is of great significance for the comprehensive promotion and deployment of solar energy. Traditional models mostly rely on morphological parameters for PV potential assessment, presenting challenges such as subjective knowledge of urban forms and difficulty in generalization within dense urban areas. This study employs Convolutional Neural Network (CNN) for 3D modeling to evaluate BIPV potential at medium and large urban scales, introducing a framework for a multidimensional single-channel one-dimensional CNN model. The model utilizes the Gaussian Mixture Model combined with building point cloud data to extract the building window-to-wall ratio, thereby enhancing individual features in the building cluster point cloud. It also utilizes the 3D physical model to extract building geographic orientation information, integrating point cloud distribution through spatial connectivity to address the issue of missing geographic orientation due to rotational invariance of point cloud convolution. Additionally, it uses the surface area of the 3D model as the weight for surface point cloud sampling and combines it with normal estimation to retain building entity information, solving the disorder of point cloud convolution. This modeling framework enables accurate prediction of PV potentials in urban blocks by utilizing city point cloud data and predicting urban block boundaries. Using Melbourne City as a case study, the model demonstrates superior performance compared to traditional morphological parameter-based prediction models, with a root mean square error of 2415.548 kWh/year and an R 2 SCORE of 0.937 in 75 training sets. The proposed modeling framework enables the prediction of multi-scale BIPV potential, which is beneficial for the staged promotion of BIPV and the development of effective energy deployment strategies. This study offers new insights for urban building energy modeling, deep learning , and energy prediction in complex scenarios at medium and large scales for sustainable urban development .
S
SunView 深度解读
该BIPV潜力评估技术对阳光电源SG系列光伏逆变器和智能运维平台具有重要应用价值。基于CNN的三维建模方法可精准预测城市建筑光伏发电潜力,为SG逆变器在密集城区的容量配置和MPPT优化提供数据支撑。研究中的点云数据处理和地理方位提取技术可集成至iSolarCloud平台,实现建筑光伏系统的智能选址和发电量预测。结合ST系列储能系统,可根据建筑BIPV潜力制定分布式光储一体化方案,优化能源部署策略,推动城市可持续能源发展。