← 返回
储能系统技术 SiC器件 ★ 5.0

通过人工智能赋能的数字孪生技术解析压缩态碳纤维纸的微观结构复杂性

Deciphering the microstructural complexities of compacted carbon fiber paper through AI-enabled digital twin technology

作者 Young Je Park · Won Young Choi · Hyunguk Choi · Seo Won Choi · Jae-ll Park · Jieun Nam · Jong Min Lee · Kwang Shik Myung · Young Gi Yoon · Chi-Young Jung
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
技术标签 SiC器件
相关度评分 ★★★★★ 5.0 / 5.0
关键词 AI-based tomographic method is introduced for porous energy materials such as CFP.
语言:

中文摘要

摘要 在基于可再生能源的低碳社会中,碳纤维纸(CFPs)被视为电化学能量转换与存储装置中的关键多孔材料。在这一新兴技术中,寻找压缩状态下组装碳纤维纸的最佳微观结构是核心挑战之一。本文提出一种基于断层扫描的分析方法,用于关联压缩状态下碳纤维纸的微观结构与传输参数。借助人工智能技术,通过识别圆柱形碳纤维的真实形态,对孔隙与固相结构的预测准确率显著提升,与解析解相比一致性高达98%。本研究将三维U-Net算法引入传统的X射线计算机断层扫描技术中,实现了碳纤维与粘结剂的完全分离。随后,系统地研究了在不同压缩比(CR)下,沿厚度方向上两种不同微观结构区域——过渡表面区与芯部区域的形成机制。最后,在广泛的纸张厚度、聚四氟乙烯(PTFE)含量和压缩比范围内,全面评估了碳纤维纸的结构-性能关系。我们证明,随着压缩比的增加,通过深入探究固相与孔隙结构的形成因素,可以进一步分析决定能量器件传输性能和电化学性能的关键因素之一——微观结构的三维特性。本研究所获得的见解不仅加深了对碳纤维纸微观结构的基础认知,也为优化下一代能源器件的设计与运行提供了路径,有望推动构建更高效、更可持续的能源体系。

English Abstract

Abstract In the decarbonized society based on the renewable sources, the carbon fiber papers (CFPs) are regarded as key porous materials for the electrochemical energy conversion and storage devices. Searching the optimum microstructure of assembled carbon fiber paper under compression is one of the central challenges in this uprising technology. Herein, we present a tomography-based analytical approach to correlate CFP microstructures and transport parameters under the compressed state. For the sake of artificial intelligence, the prediction accuracy on the pore and solid structures is dramatically improved up to 98 % consistency when compared with the analytical solution, by identifying the true shape of cylindrical carbon fibers. The three-dimensional U-net algorithm was incorporated into the conventional X-ray computed tomography, to gain a complete separation of carbon fiber and binder. Subsequently, the origin of two different microstructures in the through-plane direction, i.e. transitional surface region and core region, are investigated as a function of compression ratio (CR). Finally, the structure-property relationship of CFP is thoroughly evaluated over a wide range of the paper thicknesses, PTFE contents and CRs. We demonstrate that the microstructural three-dimensionality, which is one decisive factor determining the transport and electrochemical properties in energy devices, can be further analysed by exploring the formation factors of solid and pore structures with increasing CRs. The insights gained from this work not only enhance the fundamental understanding of CFP microstructures but also pave the way for optimizing the design and operation of next-generation energy devices, promising a more efficient and sustainable energy landscape.
S

SunView 深度解读

该碳纤维纸微观结构AI数字孪生技术对阳光电源储能系统具有重要价值。碳纤维纸作为质子交换膜燃料电池和液流电池的关键多孔材料,其压缩态下的微观结构优化直接影响离子传输效率和电化学性能。研究中的3D U-net算法与CT扫描结合可精准分析孔隙-固体结构演变规律,为PowerTitan储能系统中电池堆的材料选型和压缩比优化提供数字化设计依据。该方法论可延伸至ST系列PCS的散热材料微观结构分析,通过AI预测不同压缩条件下的热传导特性,提升功率器件热管理效率,支撑阳光电源在长时储能领域的技术创新。