找到 5 条结果 · IEEE Transactions on Sustainable Energy
基于领域知识引导的特征与损失函数构建的可解释风电功率预测
Interpretable Wind Power Forecasting with Feature and Loss Function Construction Guided by Domain Knowledge
Yongning Zhao · Yuan Zhao · Yanxu Chen · Haohan Liao 等6人 · IEEE Transactions on Sustainable Energy · 2025年8月
针对当前风电功率预测方法缺乏领域知识融合导致精度与可解释性不足的问题,提出一种可解释的数据-知识融合超短期预测模型。通过历史风速输入构建风速-功率曲线生成理论输出,并结合实测数据作为模型输入;设计边界约束损失函数,利用alpha shape算法和局部加权线性回归提取功率上下边界并动态更新以捕捉波动特性;引入基于Jensen-Shannon散度的误差分布形状损失,促使训练误差逼近正态分布。在30个风电场的实验表明,该方法在各预测时域均优于基线模型,且在噪声与缺失数据下具有强鲁棒性。
解读: 该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。特别是其基于领域知识的边界约束和误差分布优化方法,可直接应用于ST系列储能变流器的功率调度和PowerTitan系统的容量规划。通过将该预测算法集成到iSolarCloud平台,可提升风储联合项目的调度精度和经济性。其数据-知识融合的...
可解释性增强模糊集用于配电鲁棒最优调度中区域风电不确定性量化
Interpretable Augmented Ambiguity Set for Quantifying Regional Wind Power Uncertainty in Distributionally Robust Optimal Dispatch
Zhuo Li · Lin Ye · Ming Pei · Xuri Song 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月
大规模风电并网给电力系统运行带来严峻的不确定性挑战。本文提出一种基于深度学习的可解释增强模糊集,用于分布鲁棒优化框架下的两阶段经济调度,以精确刻画区域风电不确定性。该模糊集融合各风电场细粒度误差模型及站点间交互依赖关系。首次提出多教师知识蒸馏-时间生成对抗网络(MKD-time GAN),通过级联学习机制构建单风电场预测误差的球形模糊集;进一步结合Nataf变换将多个模糊集映射为表征区域联合误差分布的增强模糊集,并推导出可 tractable 的两阶段调度求解算法。IEEE 118节点系统验证了...
解读: 该研究提出的深度学习增强模糊集方法对阳光电源的储能和风电产品线具有重要应用价值。具体而言:1) 可应用于ST系列储能变流器的调度优化,提升大规模风储联合系统的经济性和可靠性;2) 其多教师知识蒸馏框架可优化PowerTitan储能系统的功率预测算法,提高调度精度;3) 研究的区域联合误差建模方法可用...
基于元强化学习的自适应可解释储能控制应对动态场景
Meta Reinforcement Learning Based Adaptive and Interpretable Energy Storage Control Meets Dynamic Scenarios
Yibing Dang · Jiangjiao Xu · Fan Yang · Changjun Jiang 等5人 · IEEE Transactions on Sustainable Energy · 2025年4月
随着可再生能源的广泛应用,储能系统在能量调度与经济套利中发挥关键作用。传统强化学习方法因泛化能力有限,在高动态环境下易出现性能下降。本文提出一种基于元强化学习的储能控制框架,包含离线训练与在线适应阶段,通过双循环更新机制和多任务学习获得高泛化性的初始参数,并结合Shapley值方法增强决策可解释性。实验表明,该模型在多种动态微网场景下适应性强,性能较传统方法提升20%至50%,且调度决策特征贡献分析符合人类直觉。
解读: 该元强化学习储能控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。其自适应双循环更新机制可显著提升储能系统在光伏出力波动、负荷变化等动态场景下的调度性能,相比传统方法提升20%-50%的经济效益直接增强产品市场竞争力。Shapley值可解释性分析可集成至iSol...
基于OWT-STGradRAM的超短期时空风速预测
Ultra-Short-Term Spatio-Temporal Wind Speed Prediction Based on OWT-STGradRAM
Feihu Hu · Xuan Feng · Huaiwen Xu · Xinhao Liang 等5人 · IEEE Transactions on Sustainable Energy · 2025年2月
考虑风电场中风机站点的方向与距离特征有助于提升风电功率预测精度。本文提出一种基于正交风向变换时空梯度回归激活映射(OWT-STGrad-RAM)的深度学习时空预测方法。该模型将风电场编码为图像,各风机作为图像中的点,通过时空融合卷积网络集成风速、温度和气压等多源数据进行特征融合与预训练,构建特征数据集。利用OWT消除不同主导风向的影响,结合STGrad-RAM刻画风机节点间的方位与距离关系,增强空间特征的可解释性,并用于风速预测。实验结果表明,所提方法在预测精度上显著优于对比模型。
解读: 该风速预测技术对阳光电源的储能和风电产品具有重要应用价值。OWT-STGradRAM模型通过深度学习实现的高精度风速预测,可优化ST系列储能变流器的调度策略和PowerTitan储能系统的容量配置。在风电场应用中,该技术可提升风电并网点功率预测精度,有助于改进储能系统的功率平滑控制和调频调峰性能。模...
预算约束下的协作式可再生能源预测市场
Budget-Constrained Collaborative Renewable Energy Forecasting Market
Carla Gonçalves · Ricardo J. Bessa · Tiago Teixeira · João Vinagre · IEEE Transactions on Sustainable Energy · 2025年1月
准确的可再生能源发电功率预测对提升电力系统中可再生能源容量及实现可持续发展目标至关重要。本文强调将去中心化的时空数据融入预测模型的重要性,并针对数据分散所有权带来的挑战,提出促进数据共享的激励机制。主要贡献包括:a)通过比较分析推荐高效且可解释的样条LASSO回归模型;b)设计数据与分析市场中的 bidding 机制,确保数据提供者获得公平补偿,并支持买卖双方表达价格诉求。此外,提出一种结合价格约束、避免冗余特征分配的时间序列预测激励机制。实验结果表明,所提方法显著提升了预测精度,风力发电数据的...
解读: 该研究的可再生能源预测市场机制对阳光电源的储能和光伏产品线具有重要应用价值。首先,高精度的时空预测模型可直接应用于PowerTitan储能系统的调度优化,提升储充策略的经济性。其次,样条LASSO回归方法可集成到iSolarCloud平台,为分布式光伏电站和储能系统提供更准确的发电/负荷预测。通过数...