← 返回
基于领域知识引导的特征与损失函数构建的可解释风电功率预测
Interpretable Wind Power Forecasting with Feature and Loss Function Construction Guided by Domain Knowledge
| 作者 | Yongning Zhao · Yuan Zhao · Yanxu Chen · Haohan Liao · Shiji Pan · Lin Ye |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年8月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风电功率预测 数据知识融合 特征构建 损失函数 可解释性 |
语言:
中文摘要
针对当前风电功率预测方法缺乏领域知识融合导致精度与可解释性不足的问题,提出一种可解释的数据-知识融合超短期预测模型。通过历史风速输入构建风速-功率曲线生成理论输出,并结合实测数据作为模型输入;设计边界约束损失函数,利用alpha shape算法和局部加权线性回归提取功率上下边界并动态更新以捕捉波动特性;引入基于Jensen-Shannon散度的误差分布形状损失,促使训练误差逼近正态分布。在30个风电场的实验表明,该方法在各预测时域均优于基线模型,且在噪声与缺失数据下具有强鲁棒性。
English Abstract
Current wind power forecasting (WPF) methods predominantly rely on data-driven deep learning models, inherently lacking integration of domain knowledge, which limits forecasting accuracy and model interpretability. To address this issue, an interpretable data-knowledge fusion ultra-short-term WPF model is proposed, in which domain knowledge guides the feature construction process and is directly embedded into the design of the loss function. In the feature construction module, a wind speed-power curve is established to generate theoretical power outputs by using historical wind speed as inputs. These theoretical outputs, combined with historical measured data, serve as inputs for the model. In the loss function construction module, a boundary constraint loss is designed by extracting the upper and lower boundaries of wind power output using the alpha shape algorithm and Local Weighted Linear Regression based on wind speed and power data. Notably, the parameters of boundaries are dynamically updated to capture the volatility of wind power. Additionally, an error distribution shape loss is introduced to penalize the deviation of the training error distribution from the normal distribution, using Jensen-Shannon divergence as an indicator. Case studies across 30 wind farms demonstrate that the proposed method guided by interpretable knowledge achieves the best average performance across all time horizons compared to baseline models. The method also shows strong robustness in noise and missing data experiments.
S
SunView 深度解读
该风电功率预测技术对阳光电源储能和智能运维产品线具有重要应用价值。特别是其基于领域知识的边界约束和误差分布优化方法,可直接应用于ST系列储能变流器的功率调度和PowerTitan系统的容量规划。通过将该预测算法集成到iSolarCloud平台,可提升风储联合项目的调度精度和经济性。其数据-知识融合的建模思路也可迁移到光伏发电预测,优化SG系列逆变器的MPPT控制策略。该研究在预测精度和抗干扰性方面的突破,对提升阳光电源新能源并网产品的智能化水平具有重要参考价值。