← 返回
风电变流技术 GaN器件 深度学习 ★ 5.0

可解释性增强模糊集用于配电鲁棒最优调度中区域风电不确定性量化

Interpretable Augmented Ambiguity Set for Quantifying Regional Wind Power Uncertainty in Distributionally Robust Optimal Dispatch

作者 Zhuo Li · Lin Ye · Ming Pei · Xuri Song · Yadi Luo · Yong Tang
期刊 IEEE Transactions on Sustainable Energy
出版日期 2025年7月
技术分类 风电变流技术
技术标签 GaN器件 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风力发电 两阶段经济调度 增强模糊集 MKD - time GAN 区域预测误差
语言:

中文摘要

大规模风电并网给电力系统运行带来严峻的不确定性挑战。本文提出一种基于深度学习的可解释增强模糊集,用于分布鲁棒优化框架下的两阶段经济调度,以精确刻画区域风电不确定性。该模糊集融合各风电场细粒度误差模型及站点间交互依赖关系。首次提出多教师知识蒸馏-时间生成对抗网络(MKD-time GAN),通过级联学习机制构建单风电场预测误差的球形模糊集;进一步结合Nataf变换将多个模糊集映射为表征区域联合误差分布的增强模糊集,并推导出可 tractable 的两阶段调度求解算法。IEEE 118节点系统验证了所提方法与调度策略的有效性。

English Abstract

A large-scale grid penetration of wind power has posed severe uncertainty challenges for power system operation. This paper comes up with an interpretable augmented ambiguity set assisted by deep learning for two-stage economic dispatch formulated in a distributionally robust optimization, aiming at precisely representing regional wind power uncertainty. The specifically designed augmented ambiguity set is driven by both the fine-grained uncertainty model of each wind farm and interactive dependencies among different sites. In particular, a multi-teacher knowledge distillation-time generative adversarial network (MKD-time GAN) is presented for the first time to form a spherical ambiguity set gathering all possible distributions for power prediction error of single wind farm. This model leverages a cascaded learning framework by typical teacher-time GANs to jointly educate one general student-time GAN so as to induce a family of comprehensive reference distributions as an ambiguity set. Further, multiple ambiguity sets are mapped into augmented ambiguity set, an interdependent joint probability distribution space for regional prediction error by Nataf transformation. Based on that, a tractable solution algorithm of two-stage optimal dispatch is explicitly derived and saves computation scale. The benefits of both novel MKD-time GAN and decision-making dispatch schemes are demonstrated in IEEE 118-bus systems.
S

SunView 深度解读

该研究提出的深度学习增强模糊集方法对阳光电源的储能和风电产品线具有重要应用价值。具体而言:1) 可应用于ST系列储能变流器的调度优化,提升大规模风储联合系统的经济性和可靠性;2) 其多教师知识蒸馏框架可优化PowerTitan储能系统的功率预测算法,提高调度精度;3) 研究的区域联合误差建模方法可用于iSolarCloud平台的风电场群智能调度功能开发。该技术有助于提升阳光电源在新能源电站智慧运营领域的竞争力。