找到 7 条结果 · 光伏发电技术

排序:
光伏发电技术 储能系统 调峰调频 ★ 5.0

计及频率安全约束的输配一体化系统两阶段鲁棒机组组合

Incorporating Frequency Security Constraints in Two-Stage Robust Unit Commitment of Integrated Transmission and Distribution System

Rufeng Zhang · Yanjing Chen · Kefei Yan · Zhengmao Li 等6人 · IEEE Transactions on Sustainable Energy · 2025年7月

随着高比例可再生能源的接入,输电与配电系统独立运行难以实现优化调度并保障频率安全。为此,本文提出一种计及频率约束的两阶段鲁棒机组组合(TRO-FCUC)模型。考虑分布式能源(DERs)在惯性响应和一次频率响应中的调节能力,构建了基于热电机组、风电场与DERs协同作用的动态频率约束。基于不确定性集合,建立TRO-FCUC模型,并采用列与约束生成(C&CG)算法结合强对偶理论,将其转化为混合整数二阶锥规划(MISOCP)模型进行迭代求解。算例分析表明,输配系统协同运行可充分挖掘DERs的调频潜力,在...

解读: 该输配一体化频率安全约束技术对阳光电源ST系列储能系统和SG光伏逆变器产品线具有重要应用价值。研究提出的DERs惯性响应与一次调频协同控制策略,可直接应用于PowerTitan储能系统的频率支撑功能优化,通过虚拟同步机VSG技术实现快速惯性响应。两阶段鲁棒优化方法为iSolarCloud平台的输配协...

光伏发电技术 ★ 5.0

基于谐波最大似然估计的分布式光伏接入电网承载能力评估新方法

A Novel Hosting Capacity Evaluation Method for Distributed PV Connected in Power System Based on Maximum Likelihood Estimation of Harmonic

Hongtao Shi · Jiahao Zhu · Yuchao Li · Zhenyang Yan 等6人 · IEEE Journal of Photovoltaics · 2025年2月

全面表征分布式光伏并网谐波注入量,并将谐波约束与其他约束相结合以准确评估配电网光伏接纳能力的方法,对于确保配电网的安全稳定运行具有重要意义。因此,本研究提出了一种基于谐波最大似然估计(MLE)的电力系统分布式光伏(PV)接纳能力评估新方法。首先,利用MLE方法中的似然函数,对分布式光伏注入的谐波参数进行最优估计,从而能够准确评估光伏并网时的谐波输出。此外,设计了一种谐波分区方法,该方法表征了并网系统中节点之间的连接程度,并将配电网划分为不同区域,有效减少了接纳能力估计中的场景数量。最后,与传统接...

解读: 该谐波承载能力评估方法对阳光电源SG系列光伏逆变器和PowerTitan储能系统具有重要应用价值。通过最大似然估计精确量化多台逆变器并网时的谐波叠加效应,可优化SG逆变器的谐波抑制算法和滤波器设计参数,提升高渗透率场景下的电能质量。该方法可集成至iSolarCloud平台,实现分布式光伏接入前的承载...

光伏发电技术 储能系统 深度学习 ★ 5.0

时空特征编码的深度学习方法用于屋顶光伏潜力评估

Spatiotemporal feature encoded deep learning method for rooftop PV potential assessment

Jian Xuab · Zhiling Guo · Qing Yuc · Kechuan Dongd 等7人 · Applied Energy · 2025年1月 · Vol.394

摘要 屋顶光伏(PV)系统是提升城市环境中可再生能源利用的一种有前景的解决方案。准确估算屋顶光伏系统的发电潜力受到复杂城市形态所引起的遮蔽效应的制约,这些效应显著降低了屋顶表面的太阳辐照度,从而导致预测误差。传统的遮蔽模拟方法计算成本高昂,凸显了在计算效率与评估精度之间实现精细平衡的必要性。本研究提出了一种创新的深度学习框架,能够有效编码多种时空数据源,以精确预测阴影投射并计算屋顶光伏潜力。具体而言,基于物理原理的真实数据,结合U-Net网络、三维(3D)建筑细节、太阳能资源数据以及气象参数,使...

解读: 该时空特征编码深度学习框架对阳光电源屋顶光伏系统规划具有重要价值。研究通过U-Net网络精准预测建筑阴影对发电量的影响(平均损失5.32%),可优化SG系列逆变器的MPPT算法在遮挡工况下的功率追踪策略。158倍的计算加速能力可集成至iSolarCloud平台,实现大规模城市屋顶光伏资源快速评估与选...

光伏发电技术 ★ 5.0

基于先验知识的大规模超高清光伏板分割数据集增强框架

A large-scale ultra-high-resolution segmentation dataset augmentation framework for photovoltaic panels in photovoltaic power plants based on priori knowledge

Ruiqing Yang · Guojin He · Ranyu Yin · Guizhou Wang 等9人 · Applied Energy · 2025年1月 · Vol.390

摘要 当前大多数提升模型精度的研究主要集中在模型本身的优化上,往往忽视了数据集质量的关键作用,尤其是在遥感大数据背景下。许多关于光伏发电(PV)的大规模提取研究通常仅关注光伏电站边界的粗略勾画,这限制了更深入的下游分析潜力。本文提出了一种针对光伏电站内部光伏板进行细粒度提取的框架,而非仅仅捕捉电站的外部轮廓。通过聚焦于单个光伏板级别的分割,该方法为下游应用(如发电量估算和空间布局优化)提供了更为精确的评估基础。该框架融合了先验知识,以应对地表覆盖、成像条件以及背景干扰所带来的挑战。一种创新的标签...

解读: 该超高分辨率光伏板分割框架对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过面板级精细识别,可显著提升SG系列逆拟器的MPPT优化策略精度,实现组串级故障诊断与发电量评估。数据集质量提升(78%→92%)为预测性维护算法提供可靠训练基础,结合先验知识的标注效率提升75%可加速电站数字...

光伏发电技术 储能系统 深度学习 ★ 5.0

基于深度学习与遥感的城市土地分类对光伏潜力的分析

PV potential analysis through deep learning and remote sensing-based urban land classification

Hongjun Tan · Zhiling Guo · Yuntian Chen · Haoran Zhang 等7人 · Applied Energy · 2025年1月 · Vol.387

城市土地在商业、居住、草地及其他行政分区中的利用情况将影响可再生能源基础设施(如光伏板)的可用安装面积。将土地利用类型纳入光伏潜力评估对于优化空间配置、贴近能源需求中心以及提升系统效率至关重要。为解决以往研究忽视城市土地利用问题的局限性,本文提出一个融合遥感数据与深度学习方法的框架,实现八类细粒度和三类粗粒度的土地利用分类。该框架针对每种土地利用类型计算其可安装光伏系统的面积,并结合2023年年均太阳辐照量评估其发电潜力。案例研究表明,德国海尔布隆(Heilbronn)地区的土地适合地面光伏安装...

解读: 该研究基于深度学习和遥感数据的城市土地分类与光伏潜力评估框架,对阳光电源SG系列逆变器和iSolarCloud平台具有重要应用价值。通过精细化土地利用分类(商业、住宅、未利用地等),可优化地面光伏与屋顶光伏的配置策略。研究中不同地类的单位面积发电潜力差异,可指导阳光电源1500V系统和MPPT优化技...

光伏发电技术 深度学习 ★ 5.0

选择有效的NWP集成方法以实现基于深度学习的光伏功率预测

Selecting effective NWP integration approaches for PV power forecasting with deep learning

Dayin Chenab · Xiaodan Shie · Mingkun Jiang · Shibo Zhuab 等8人 · Solar Energy · 2025年1月 · Vol.301

准确预测光伏发电功率对于可靠的能源调度和系统运行至关重要。尽管深度学习模型在该领域已展现出强大的能力,但如何有效地将数值天气预报(NWP)数据融入此类模型仍然是一个具有挑战性的问题。在本研究中,我们提出并系统评估了五种不同的NWP集成策略——分别称为方法1至方法5——以提升光伏发电预测性能。这些方法在14种代表性模型和四个预测时间范围(4、24、72和144步)上进行了测试,涵盖了短期、中期和长期预测场景。实验结果表明,每种集成方法的有效性取决于模型结构和预测时间范围。特别是,在短期预测中,方法...

解读: 该研究系统评估了五种NWP数值天气预报与深度学习模型的集成策略,对阳光电源iSolarCloud智慧运维平台的光伏功率预测模块具有直接应用价值。研究发现Method 5适配LSTM短期预测、Method 4适配Transformer长期预测的结论,可优化SG系列逆变器的发电预测算法。精准的多时间尺度...

光伏发电技术 储能系统 深度学习 ★ 5.0

基于迎风侧首排数据与深度学习的长跨柔性光伏阵列风压分布预测

Prediction of wind pressure distribution on long-span flexible photovoltaic arrays using windward first row data and deep learning

Hehe Rena · Haoyue Liua · Shitang Kea · Wenxin Tiana 等8人 · Solar Energy · 2025年1月 · Vol.298

摘要 长跨柔性光伏(PV)结构是解决“光伏+”发展挑战的关键方案之一。然而,其大跨度、轻质、低刚度和高离地间隙等特性加剧了风致振动效应,使得风荷载成为结构设计中的关键因素。鉴于风压试验中风压数据具有空间分布特征且测点数量受限,本文提出一种全卷积网络(FCN)模型,该模型在卷积神经网络(CNN)框架内融合多尺度特征与跳跃连接结构,利用柔性光伏阵列首排的风压场数据来预测整个光伏阵列的风压分布。结果表明,所预测风压的相对误差约为9%,预测值与实际风压之间的相关系数超过0.95。这说明该FCN模型能够有...

解读: 该风压预测技术对阳光电源大型地面光伏电站的结构设计具有重要价值。针对渔光互补、农光互补等'光伏+'场景中采用的大跨度柔性支架系统,该深度学习模型可通过少量迎风侧测点数据预测整体风压分布,优化支架结构设计,降低风洞试验成本。可应用于SG系列逆变器配套的柔性支架系统选型,指导PowerTitan储能系统...