← 返回
基于深度强化学习的可再生能源与储能系统在多电力市场中最大化收益策略
Deep reinforcement learning-based strategy for maximizing returns from renewable energy and energy storage systems in multi-electricity markets
| 作者 | Javier Cardo-Miota · Hector Beltran · Emilio Pérez · Shafi Khadem · Mohamed Bahloul |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 388 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 强化学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Deep reinforcement learning algorithms for bidding strategies. |
语言:
中文摘要
摘要 可再生能源(RES)与储能系统(ESS)的集成在优化其参与电力市场的过程中带来了挑战与机遇。本研究提出了一种新方法,利用深度强化学习(RL)算法为共址配置的可再生能源与电池储能系统(BESS)开发最优投标策略,实现同时参与电能量市场和辅助服务(AS)市场的多市场运作。所提出的方法采用马尔可夫决策过程(MDP)框架,根据市场状况和技术约束动态管理BESS的使用。作为强化学习智能体,采用了名为双延迟深度确定性(TD3)策略梯度算法的Actor-Critic方法。数据驱动的训练过程有助于模型学习,同时最小化所需的训练数据集规模和训练时间。案例研究聚焦于爱尔兰的电力市场环境,涉及参与日前电能量市场以及DS3计划中的频率下垂曲线响应储备服务。利用一个7 MW太阳能光伏电站和一个1 MWh电池储能系统的实际历史数据评估该方法的性能。该强化学习智能体能够动态适应市场变化和系统约束,在与基准策略的对比中实现了显著的经济效益,分别额外获得了8271欧元、166,738欧元和11,369欧元的收益。
English Abstract
Abstract The integration of Renewable Energy Sources (RES) with Energy Storage Systems (ESS) presents challenges and opportunities in optimizing their participation in electricity markets. This study introduces a novel approach that leverages Deep Reinforcement Learning (RL) algorithms to develop optimal bidding strategies for collocated RES with Battery ESS (BESS) configurations, enabling multi-market participation in both energy and ancillary services (AS) markets. The proposed method uses a Markov Decision Process (MDP) framework to manage BESS utilization dynamically, considering market conditions and technical constraints. As an RL agent, the actor–critic approach known as the Twin Delayed Deep Deterministic (TD3) Policy Gradient algorithm is implemented. A data-driven training process facilitates model learning while minimizing the required training dataset and time. Focused on the Irish context, the case study involves participation in both the day-ahead energy market and reserve services for frequency droop curve response of the DS3 Programme. Historical data from a 7 MW solar PV plant and a 1 MWh BESS are utilized to evaluate the performance. The RL agent dynamically adapts to market dynamics and system constraints, achieving substantial economic benefits compared to benchmark strategies, with an additional 8271 € , 166,738 € , and 11,369 € , respectively.
S
SunView 深度解读
该深度强化学习多市场竞价策略对阳光电源ST系列储能变流器及PowerTitan系统具有重要应用价值。研究中TD3算法实现的动态BESS调度与我司储能系统的智能能量管理高度契合,可集成至iSolarCloud平台实现日前市场与辅助服务的联合优化。案例中光储协同参与调频备用服务的模式,可直接应用于我司1500V光储一体化解决方案,结合GFM控制技术提升电网支撑能力。建议将该强化学习框架融入ST系列PCS的EMS策略库,通过数据驱动优化提升多市场场景下的收益,特别适用于欧洲及爱尔兰等成熟电力市场的储能项目部署。