← 返回
电动汽车驱动 储能系统 深度学习 ★ 4.0

MapVC:基于地图的深度学习用于电动汽车生态驾驶中的实时电流预测

MapVC: Map-based deep learning for real-time current prediction in eco-driving electric vehicles

作者 Zhuoer Wanga1 · Xiaowen Zhub1 · Qingbo Wangc1 · Jian Zhoua · Bijun Liad · Baohan Shie · Chenming Zhang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 396 卷
技术分类 电动汽车驱动
技术标签 储能系统 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 A map-based deep learning framework is proposed for real-time current prediction in eco-driving electric vehicles.
语言:

中文摘要

摘要 电源电池工作电流的预测对于保障电动汽车(EV)的工作性能至关重要。然而,复杂的真实世界生态驾驶场景——特别是再生制动系统(RBS)的频繁启用导致出现负电流值——给动力系统数据带来了强烈的随机性。为了克服传统数据驱动模型在捕捉此类复杂性方面的局限性,本文提出了MapVC框架。首先,引入一种基于地图的编码器,通过估计车辆运动状态来推断RBS的工作情况,显著增强了对复杂真实驾驶条件下数据的预测性能。此外,采用基于多头自注意力机制的解码器,以提取多尺度时间特征,实现对电池内部状态变化的全面建模。同时,集成双向门控循环网络,有效缓解长期依赖性丢失问题,并利用过去与未来的时序信息进行鲁棒的序列建模。为进一步缓解高维参数带来的过拟合问题,本文引入改进型河马优化算法(Improved Hippopotamus Optimization, IHO)以实现高效的网络参数调优。该模型在中国武汉配备RBS的电动公交车真实运行数据上进行训练,实验结果表明,模型均方误差(MSE)低至0.0709,平均绝对误差(MAE)为0.1859,平均绝对百分比误差(MAPE)仅为1.81%,相较于先前研究,MSE最多降低93%,MAPE提升达5.6倍,同时保持了出色的计算效率。该模型在预测运行数据关键参数方面优于其前身模型,为地理信息在车辆运行工况预测中的应用提供了重要指导。

English Abstract

Abstract The operating current prediction of power batteries is crucial for ensuring the working performance of Electric Vehicle (EV). However, complex real-world eco-driving scenarios—particularly the common engagement of regenerative braking systems (RBS) that produce negative current values—have introduced strong randomness into power system data. To overcome the limitations of conventional data-driven models in capturing such complexity, we propose the MapVC framework. First, a map-based encoder is introduced, which deduces the operation of the RBS via estimating the vehicle's motion state, greatly reinforcing prediction performance of data from complex real-world driving conditions. Additionally, a decoder leveraging multi-head self-attention is employed to extract multi-scale temporal features, enabling comprehensive modeling of intrinsic battery state changes. Moreover, a bidirectional gated recurrent network is integrated, which manages to address long-term dependency loss and exploit both past and future information for robust sequential modeling. To further mitigate overfitting problem caused by high-dimensional parameters, we introduce the Improved Hippopotamus Optimization (IHO) algorithm for efficient network tuning. Trained on real-world data from electric buses with RBS in Wuhan, China, our model achieves an MSE of 0.0709, MAE of 0.1859 and MAPE of 1.81 %, representing up to 93 % reduction in MSE and a 5.6-fold improvement in MAPE over prior work while maintaining outstanding computational efficiency. It outperforms its precursor in predicting key parameters of operating data and provides significant guidance for the application of geographic information to vehicle operating condition prediction.
S

SunView 深度解读

该MapVC框架对阳光电源储能系统和充电桩产品具有重要应用价值。其基于地图的电流预测技术可直接应用于ST系列PCS和充电站的能量管理系统,通过预判制动回馈电流优化PowerTitan储能系统的充放电策略。多头注意力机制与双向GRU的组合为iSolarCloud平台的预测性维护提供了新思路,可提升电池SOC估算精度。IHO优化算法对阳光电源电机驱动控制器的参数自整定具有借鉴意义,有助于降低过拟合风险并提高实时响应性能。