← 返回
储能系统技术 储能系统 可靠性分析 深度学习 ★ 4.0

基于能量收集的无人机辅助智能反射面系统:5G/6G关键场景的可靠性增强

UAV-Assisted IRS System With Energy Harvesting: Enhanced Reliability in Critical Scenarios for 5G/6G Wireless Communication

作者 Wentao Zhang · Meng Cheng · Qianliang Xiang · Qinmiao Li
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 可靠性分析 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 短期负荷预测 K - NBEATSx模型 聚类算法 深度学习 预测性能
语言:

中文摘要

本文提出无人机辅助智能反射面系统,提升5G/6G地对地用户网络性能,适用于城市拥堵区域深衰落场景。采用射频能量收集为IRS和无人机供电,动态功率分配因子依赖高度相关Nakagami-m参数。数学框架包含高度相关的小尺度和大尺度衰落模型,推导频谱效率和中断概率表达式。仿真验证了分析结果并与现有技术对比,证明系统优越性。

English Abstract

Short-term load forecasting (STLF) is essential for the efficient operation and management of modern power grids, impacting dispatch and trading strategies in electricity markets. However, accurately forecasting short-term loads remains challenging due to the difficulty in categorizing diverse operational modes and the limited availability of exogenous variables such as temperature and economic indicators. To address these challenges, this study introduces K-NBEATSx, a novel model that integrates clustering and deep learning methodologies. The methodology begins by using K-Shape clustering to categorize electric load data based on shape similarity, effectively distinguishing different operational modes. Subsequently, the Neural Basis Expansion Analysis With Exogenous Variables (NBEATSx) method is applied by incorporating trend and seasonality modules to enhance forecasting accuracy. Case studies using load datasets from 3 different countries demonstrate that the proposed model outperforms traditional deep learning models across various operational scenarios. Additionally, the integration of clustering algorithms is validated as an effective strategy for improving prediction performance. This research offers an effective new methodology for deep-learning-based STLF, contributing to enhancing the reliability and efficiency of power system operation.
S

SunView 深度解读

该无人机能量收集技术与阳光电源无线充电解决方案相关联。阳光在新能源汽车领域积累的无线充电技术可延伸至无人机和智能设备。该研究的RF能量收集和动态功率分配算法,可优化阳光OBC车载充电机的能量管理,提升新能源汽车V2G场景下的通信可靠性和能源利用效率。