← 返回
一种基于优化YOLOv8的单阶段光伏组件缺陷检测方法
A Single-Stage Photovoltaic Module Defect Detection Method Based on Optimized YOLOv8
| 作者 | Yihong Gao · Chengxin Pang · Xinhua Zeng · Pengyi Jiang |
| 期刊 | IEEE Access |
| 出版日期 | 2025年1月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 SiC器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏模块 缺陷检测 PSA - PVdetector 部分空间注意力机制 多通道特征融合 |
语言:
中文摘要
针对光伏组件缺陷检测中微小缺陷特征易丢失、计算复杂度高及边缘设备部署困难等问题,提出一种基于YOLOv8的单阶段检测模型PSA-PVdetector(PSA-det)。该模型引入部分空间注意力(PSA)机制,结合部分卷积与空间注意力,优化特征提取并降低计算开销;设计多通道特征融合(MCFF)检测头,提升小目标缺陷的定位精度;采用结合边界框形状信息的ShapeIoU作为回归损失,增强缺陷定位准确性。实验表明,PSA-det在Panel-2和Solar数据集上mAP50分别达到87.2%和72.0%,在Nvidia Jetson Xavier NX DK平台推理延迟低至2.6 ms,兼顾高精度与实时性。
English Abstract
Defect detection in photovoltaic (PV) modules presents significant challenges. In the presence of inconspicuous or small-scale defects, downsampling operations can cause features to vanish, and computational complexity increases as the model deepens, resulting in reduced detection accuracy, higher latency, and challenges in deploying the model on edge devices with limited computational resources. In response, this article proposes a single-stage object detection model based on YOLOv8, the PSA-PVdetector (PSA-det). The core innovation of PSA-det is the novel Partial Spatial Attention (PSA) mechanism, which integrates Partial Convolution (PConv) with Spatial Attention (SA) to optimize feature extraction and reduce computational overhead. For small-scale defect detection, a Multi-Channel Feature Fusion (MCFF) detection head is designed to enable finer-grained center prediction. Additionally, ShapeIoU is employed as the bounding box regression metric, enhancing the classical IoU by incorporating bounding box shape, thereby improving defect localization accuracy. Experimental results demonstrate that PSA-det achieves an mAP50 of 87.2% on the Panel-2 dataset and 72.0% on the Solar dataset. On the Nvidia Jetson Xavier NX DK platform, PSA-det achieves an inference latency as low as 2.6 ms, effectively balancing accuracy and real-time performance.
S
SunView 深度解读
该优化YOLOv8缺陷检测技术对阳光电源智能运维体系具有重要应用价值。PSA-det模型的2.6ms低延迟推理能力可直接部署于iSolarCloud云平台的边缘计算节点,实现SG系列光伏逆变器组件的实时缺陷诊断。其87.2%的高精度微小缺陷识别能力可增强预测性维护功能,提前发现热斑、隐裂等故障隐患,降低电站运维成本。多通道特征融合检测头技术可借鉴应用于PowerTitan储能系统的电芯异常检测,提升ST系列储能变流器的安全监控水平。该单阶段检测方案为阳光电源构建轻量化、高精度的智能诊断系统提供了技术路径,支撑光储一体化电站的无人值守运维目标。