← 返回
储能系统技术 储能系统 GaN器件 深度学习 ★ 4.0

交通场景理解的深度学习综述

Deep Learning for Traffic Scene Understanding: A Review

作者 Parya Dolatyabi · Jacob Regan · Mahdi Khodayar
期刊 IEEE Access
出版日期 2025年1月
技术分类 储能系统技术
技术标签 储能系统 GaN器件 深度学习
相关度评分 ★★★★ 4.0 / 5.0
关键词 深度学习 交通场景理解 领域适应 超参数优化 实际应用
语言:

中文摘要

本综述论文深入分析深度学习模型在交通场景理解中的应用,这是现代智能交通系统的关键方面。研究检验分类、目标检测和分割等基础技术,并扩展到动作识别、目标跟踪、路径预测、场景生成检索、异常检测、图像到图像转换I2IT和人员重识别等更高级应用。论文综合广泛研究的见解,追溯从传统图像处理方法到复杂深度学习技术如卷积神经网络CNN和生成对抗网络GAN的演进。综述探讨三类主要领域自适应DA方法:基于聚类、基于差异和基于对抗,强调其在交通场景理解中的重要性。讨论超参数优化HPO的重要性,强调其在增强模型性能和效率特别是调整深度学习模型用于实际现实应用中的关键作用。特别关注这些模型在现实应用中的集成,包括自动驾驶、交通管理和行人安全。综述解决交通场景理解中的关键挑战,如遮挡、城市交通动态性以及变化天气和光照条件等环境复杂性。

English Abstract

This review paper presents an in-depth analysis of deep learning (DL) models applied to traffic scene understanding, a key aspect of modern intelligent transportation systems. It examines fundamental techniques such as classification, object detection, and segmentation, and extends to more advanced applications like action recognition, object tracking, path prediction, scene generation and retrieval, anomaly detection, Image-to-Image Translation (I2IT), and person re-identification (Person Re-ID). The paper synthesizes insights from a broad range of studies, tracing the evolution from traditional image processing methods to sophisticated DL techniques, such as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs). The review also explores three primary categories of domain adaptation (DA) methods: clustering-based, discrepancy-based, and adversarial-based, highlighting their significance in traffic scene understanding. The significance of Hyperparameter Optimization (HPO) is also discussed, emphasizing its critical role in enhancing model performance and efficiency, particularly in adapting DL models for practical, real-world use. Special focus is given to the integration of these models in real-world applications, including autonomous driving, traffic management, and pedestrian safety. The review also addresses key challenges in traffic scene understanding, such as occlusions, the dynamic nature of urban traffic, and environmental complexities like varying weather and lighting conditions. By critically analyzing current technologies, the paper identifies limitations in existing research and proposes areas for future exploration. It underscores the need for improved interpretability, real-time processing, and the integration of multi-modal data. This review serves as a valuable resource for researchers and practitioners aiming to apply or advance DL techniques in traffic scene understanding.
S

SunView 深度解读

该交通场景理解技术可应用于阳光电源储能电站和充电站智能管理。阳光在新能源汽车充电领域需要车辆识别、车位管理和安全监控。该深度学习综述涵盖的目标检测和跟踪技术可集成到阳光充电站管理系统,实现车辆自动识别、充电桩智能分配和异常行为检测。在工商业储能场景下,该技术可优化园区能源管理,识别车辆进出和负荷变化。结合阳光iSolarCloud平台的视频分析能力,该交通场景理解技术可提升充电站运营效率,支持V2G车网互动,实现电动汽车有序充电和削峰填谷,增强电网友好性和用户体验。