← 返回
基于ANN引导的NSGA-II优化在多联产太阳能系统中选择传热流体和相变材料
Ann-guided NSGA-II optimization for selecting heat transfer fluid and phase change material in a multigeneration solar energy-based system
| 作者 | Ali Ranjbar Hasan Barog · Sina Hosseini Rad · Morteza Taragh · Mahdi Moghim |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 346 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | HTF and PCM options are evaluated via ANN-based optimization for different units. |
语言:
中文摘要
摘要 本研究探讨了针对Bandar Abbas气候条件定制的多联产能源系统中传热流体(HTFs)与相变材料(PCMs)的选择问题。该系统集成了抛物槽式集热器(PTCs)、热能储存(TES)以及高温有机朗肯循环(HTCORC)。在PTC和TES循环中评估了三种基于纳米流体的传热流体(TiO₂、Al₂O₃、CuO),同时为TES选用了两种相变材料(NaOH–NaCl 和 MgCl₂–KCl–NaCl)。对于HTCORC单元,则考虑了甲苯、苯和环戊烯作为工作流体。为了高效识别最优的HTF和PCM组合,采用了一种人工神经网络辅助的NSGA-II算法,该方法针对两组目标函数进行优化:(1)总成本率、㶲效率和氢气产量;(2)总成本率、发电功率和能量效率。通过三种不同的多准则决策方法(PROMETHEE、TOPSIS和VIKOR)来选取最佳折衷方案。对于第一组目标函数,最优配置为Al₂O₃与MgCl₂–KCl–NaCl及苯的组合,其成本率为36.0054美元/天,㶲效率为12.72%,年氢气产量达141,297.365千克;对于第二组目标函数,最优配置为Al₂O₃与MgCl₂–KCl–NaCl及甲苯的组合,其成本率为37.2402美元/天,输出功率为247,386.12瓦,能量效率为24.62%。
English Abstract
Abstract This research explores the selection of heat transfer fluids (HTFs) and phase change materials (PCMs) within a multi-generational energy system tailored to the climatic conditions of Bandar Abbas. The system incorporates parabolic trough collectors (PTCs), thermal energy storage (TES), and a high-temperature organic Rankine cycle (HTCORC). Three nanofluid-based HTFs (TiO 2 , Al 2 O 3 , CuO) are assessed for both PTCs and TES cycles, alongside two PCMs (NaOH–NaCl and MgCl 2 –KCl–NaCl) for TES. For the HTCORC unit, Toluene, Benzene, and Cyclopentene are considered as working fluids. To efficiently identify optimal HTFs and PCM, an artificial neural network-assisted NSGA-II algorithm is employed, targeting two objective functions: (1) total cost rate, exergy efficiency, and hydrogen production; and (2) total cost rate, power output, and energy efficiency. Three distinct Multi-criteria decision-making techniques (PROMETHEE, TOPSIS and VIKOR) are used to select the best trade-offs. For the first group of objective functions, the best configuration is Al 2 O 3 & MgCl 2 –KCl–NaCl & Benzene, yielding a cost rate of 36.0054 $/day, 12.72 % exergy efficiency, and 141,297.365 kg/year hydrogen production. For the second set, Al 2 O 3 & MgCl 2 –KCl–NaCl & Toluene performs best, with a cost rate of 37.2402 $/day, 247,386.12 W power output, and 24.62 % energy efficiency.
S
SunView 深度解读
该多目标优化研究为阳光电源储能系统选型提供方法论参考。文中ANN-NSGA-II算法可应用于ST系列PCS与PowerTitan储能系统的热管理优化,特别是相变材料(PCM)选择与纳米流体冷却方案设计。多准则决策技术(TOPSIS/VIKOR)可集成至iSolarCloud平台,实现储能电站全生命周期成本与效率的智能平衡。研究中12.72%火用效率与成本率优化思路,对大型光储一体化项目的热电联供系统设计具有借鉴意义,可提升系统经济性与能量转换效率。