← 返回
电动汽车驱动 SiC器件 可靠性分析 深度学习 ★ 5.0

基于Transformer的传感器融合在自动驾驶中的应用综述

Transformer-Based Sensor Fusion for Autonomous Vehicles: A Comprehensive Review

作者 Ahmed Abdulmaksoud · Ryan Ahmed
期刊 IEEE Access
出版日期 2025年1月
技术分类 电动汽车驱动
技术标签 SiC器件 可靠性分析 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 传感器融合 深度学习 Transformer模型 恶劣天气 目标检测
语言:

中文摘要

传感器融合在机器人、自动驾驶和航空航天等关键领域至关重要。通过整合多源传感器数据,可克服单一传感器的局限性,提升测量可靠性并降低不确定性。基于深度学习的融合方法促进了多模态学习的发展,增强了目标检测性能,但在恶劣天气条件下仍面临挑战。Transformer模型因其在视觉与语言等领域的强大建模能力,为传感器融合提供了新机遇,但其高延迟与计算开销仍是瓶颈。本文系统综述了传感器融合与Transformer模型的研究进展,深入调研了基于Transformer的相机-LiDAR与相机-雷达融合的前沿方法,并对现有技术进行定量分析,揭示研究空白,推动未来方向。

English Abstract

Sensor fusion is vital for many critical applications, including robotics, autonomous driving, aerospace, and beyond. Integrating data streams from different sensors enables us to overcome the intrinsic limitations of each sensor, providing more reliable measurements and reducing uncertainty. Moreover, deep learning-based sensor fusion unlocked the possibility of multimodal learning, which utilizes different sensor modalities to boost object detection. Yet, adverse weather conditions remain a significant challenge to the reliability of sensor fusion. However, introducing the Transformer deep learning model in sensor fusion presents a promising avenue for advancing its sensing capabilities, potentially overcoming that challenge. Transformer models proved powerful in modeling vision, language, and numerous other domains. However, these models suffer from high latency and heavy computation requirements. This paper aims to provide: 1) an extensive overview of sensor fusion and transformer models; 2) an in-depth survey of the state-of-the-art (SoTA) methods for Transformer-based sensor fusion, focusing on camera-LiDAR and camera-radar methods; and 3) a quantitative analysis of the SoTA methods, uncovering research gaps and stimulating future work.
S

SunView 深度解读

该Transformer传感器融合技术对阳光电源新能源汽车产品线具有重要应用价值。在车载OBC充电机和电机驱动系统中,可融合电流、电压、温度等多传感器数据,提升SiC器件的实时故障诊断与可靠性预测能力。对于充电桩产品,多模态融合可增强异常检测精度,优化充电安全策略。Transformer的长序列建模能力可应用于iSolarCloud平台的预测性维护,融合光伏逆变器与储能系统的多维运行数据,实现更精准的设备健康管理。但需关注模型轻量化以满足边缘计算实时性要求,建议结合知识蒸馏技术降低计算开销。