← 返回
嵌入式系统电驱动故障诊断的平均池化降采样数据融合方法
Fault Diagnosis for Electric Drives Using Averagely Pooled and Downsampled Data Fusion on Embedded Systems
| 作者 | Jaehoon Shim · Gyu Cheol Lim · Sangwon Lee · Jung-Ik Ha |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年12月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 深度学习 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电驱动系统 故障诊断 数据融合 降采样 神经网络分类器 |
语言:
中文摘要
提出嵌入式系统电驱动故障诊断的数据驱动方法,无需额外传感器或外部计算资源诊断霍尔电流传感器偏置/比例误差和功率开关开路故障。首先识别并建议电驱动系统中故障信息丰富的数据类型,使用统计分析提出候选输入数据类型的有效融合方法创建诊断模型。其次引入利用平均池化(AP)的降采样方法从DSP处理的大量原始数据中有效采样,保留关键信息同时减小数据量。最后提出采用神经网络(NN)分类器的诊断方案使用降采样数据准确诊断故障。通过分析和统计验证证明从采样到诊断的有效性。使用TMS320F28379S DSP展示实时诊断结果。
English Abstract
This study introduces a data-driven approach for diagnosing faults in electric drive systems on embedded systems. The method is designed to diagnose current Hall sensor offset, scale errors, and power switch open faults without the need for additional sensors or external computing resources. The proposed approach addresses three key points. First, it identifies and suggests data types in electric drive systems that are rich in fault-related information. Additionally, it uses statistical analysis to propose an effective fusion method for the input data types to create a diagnostic model among the various candidates. Second, a downsampling method utilizing average pooling (AP) is introduced to effectively sample data from the large volume of raw data processed by the digital signal processor (DSP), preserving essential information while reducing data size. Finally, a diagnostic scheme employing a neural network (NN)-based classifier is proposed to accurately diagnose faults using the downsampled data. The proposed method’s effectiveness, from sampling to diagnosis, is demonstrated through both analytical and statistical validation. Furthermore, real-time diagnostic results are presented using the TMS320F28379S DSP.
S
SunView 深度解读
该嵌入式电驱动故障诊断技术对阳光电源电机驱动产品有重要应用价值。平均池化降采样方法可应用于新能源汽车OBC和电机控制器的实时故障诊断,在资源受限的嵌入式系统中实现高准确度诊断。神经网络分类器对ST储能系统的功率开关和传感器故障检测有借鉴意义,可提高系统可靠性和可维护性。该技术对阳光电源智能运维平台的边缘计算故障诊断功能开发有参考价值,可降低云端计算负担并实现快速响应。