← 返回

协同分布对齐神经网络用于高性能变流器故障定位

Synergetic Distribution Align Neural Network for High-Performance Power Converters Fault Location

作者 Wu Fan · Qiu Gen · Zhang Gang · Sheng Hanming · Chen Kai · Wang Yifan
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年4月
技术分类 储能系统技术
技术标签 储能系统 工商业光伏 深度学习 故障诊断
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力变换器 故障诊断 小样本学习 特征分布对齐 神经网络
语言:

中文摘要

基于深度学习的数据驱动方法在变流器故障诊断中表现优异,但普遍存在依赖故障样本、精度与鲁棒性不足的问题,限制了其在工业系统中的应用。本文提出一种小样本学习理论,通过共享特征提取器实现严格的跨域特征分布对齐,以同时获取域不变性与故障判别性特征,从而提升诊断性能。基于该理论,设计了一种具有嵌入式结构和参数分离训练机制的渐近特征分布对齐神经网络。该结构通过多层渐近特征约束实现严格分布对齐,并结合渐近损失函数提升训练稳定性。在多种变流器上的实验表明,即使在零样本条件下,该方法仍能准确识别多个开路故障位置,相较于前沿方法在样本需求、精度和鲁棒性方面均表现出优越性。

English Abstract

Deep learning-based data-driven methods have demonstrated remarkable performance in power converter fault diagnosis. However, the prevalent issue of failure sample dependence, coupled with limited accuracy and robustness, restricts the applicability of these methods in real-world industrial systems. This research underscores a small-sample learning theory that enforcing strict cross-domain feature distribution alignment with shared feature extractors facilitates the extraction of both domain-invariant and fault-discrimination features. These features are conducive to improving fault diagnosis performance. Based on this theory, an asymptotic feature distribution align neural network with the embedded structure and parameter separation training is proposed for high-performance power converters fault location. The embedded structure implements asymptotic multifeature layer constraints to achieve strict cross-domain feature distribution alignment and designs parameter separation training with an asymptotic loss function to improve the training stability. Experimental results on multiple power converters demonstrate the effectiveness of the proposed method. Even under the challenging condition of zero samples, the method achieves excellent fault diagnosis accuracy for multiple open-circuit fault locations. A substantial comparison to state-of-the-art techniques shows the proposed scheme’s superiority in failure sample size, accuracy, and robustness.
S

SunView 深度解读

该协同分布对齐神经网络技术对阳光电源ST系列储能变流器和SG系列光伏逆变器的智能运维具有重要应用价值。其零样本/小样本学习能力可解决工业现场故障数据稀缺问题,直接应用于iSolarCloud云平台的预测性维护模块。针对IGBT/SiC功率模块开路故障的精准定位能力,可显著提升PowerTitan大型储能系统和1500V光伏系统的故障诊断效率,减少停机时间。跨域特征对齐方法为不同拓扑结构(两电平/三电平)和不同工况下的统一诊断模型提供理论支撑,降低算法部署成本。该技术可嵌入边缘控制器实现实时故障定位,提升产品可靠性和市场竞争力。