← 返回
基于热管的250-kW氮化镓集成模块化电机驱动器热管理系统设计
Heat-Pipe-Based Thermal Management System Design for a 250-kW GaN-Based Integrated Modular Motor Drive
| 作者 | Seyed Iman Hosseini Sabzevari · Salar Koushan · Armin Ebrahimian · Towhid Chowdhury · Nathan Weise · Ayman El-Refaie |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年4月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 集成模块化电机驱动 热管理系统 热管 氮化镓半导体 航空应用 |
语言:
中文摘要
集成模块化电机驱动(IMMD)可实现高效率、高功率密度和容错能力,但受限于空间,其热管理设计面临挑战。本文针对航空应用中的250-kW IMMD,提出一种基于3 mm热管的热管理系统(TMS)设计方案。通过PLECS软件对电力电子模块进行电-热联合仿真,并建立简化的热阻模型以估算氮化镓(GaN)半导体芯片结温。实验验证了所设计TMS的性能,并与商用散热器对比。结果表明,在冷却液温度为24°C时,该系统优于商用散热器;在41°C工况下,GaN器件最大结温仅为95.16°C,满足额定功率运行需求。
English Abstract
Integrated modular motor drive (IMMD) is an effective approach for realizing high-efficiency, high-power-density, and fault-tolerant electric machines. However, designing an efficient thermal management system (TMS) for the motor drive becomes a challenge, particularly due to space constraints. This article presents the design of a TMS based on 3-mm heat pipes for a 250-kW IMMD intended for aviation applications. The power electronics module is simulated using PLECS software where an electrothermal analysis is conducted. A simplified thermal resistance model of the system is developed to estimate the die junction temperature of gallium nitride (GaN) semiconductors. The performance of the proposed TMS is evaluated through experimental tests and compared to an off-the-shelf heat sink. The results demonstrate that, at a fluid temperature of 24~^ C, the designed TMS outperforms the off-the-shelf heat sink. Additionally, the designed TMS was tested with a fluid temperature of 41~^ C, matching the temperature of the coolant fluid in the final application. The results indicated that the maximum estimated die junction temperature of the GaN semiconductors is 95.16~^ C while generating the rated power loss in the converter.
S
SunView 深度解读
该热管散热技术对阳光电源GaN功率器件应用具有重要参考价值。文章针对250kW高功率密度电机驱动的热管理挑战,提出3mm热管方案,在41°C环境下将GaN器件结温控制在95°C以内,验证了紧凑空间下的高效散热能力。该技术可直接应用于阳光电源车载OBC充电机和电机驱动产品,提升GaN器件在高功率密度场景的可靠性;对ST系列储能变流器的功率模块散热设计具有借鉴意义,特别是集装箱式PowerTitan系统的空间受限工况;电-热联合仿真方法可优化SG系列光伏逆变器的GaN/SiC器件热设计流程,支撑1500V高压系统的功率密度提升和成本优化。