← 返回
储能系统技术 储能系统 DC-DC变换器 深度学习 ★ 5.0

高阶DC-DC变换器的在线神经网络无模型控制方法

Online Neural Network Based Model-free Control Method for High-order DC-DC Converter

作者 Zhenkun Xiong · Liangzong He
期刊 IEEE Journal of Emerging and Selected Topics in Power Electronics
出版日期 2025年8月
技术分类 储能系统技术
技术标签 储能系统 DC-DC变换器 深度学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 DC-DC转换器 神经网络 无模型控制策略 稳定性分析 实验验证
语言:

中文摘要

在复杂DC-DC变换器各种控制策略中,神经网络控制方法日益突出。其擅长无需精确数学模型的函数逼近,特别适合复杂、非线性和不确定控制系统。提出高阶DC-DC变换器新型在线无模型控制策略,利用神经网络能力。通过利用实时运行数据训练神经网络,该方法无需复杂模型即可开发变换器控制器。使用在线估计技术提取过程梯度。深入探讨无模型系统原理并详细分析控制方法稳定性。在高升压DC-DC变换器上进行大量实验验证控制框架的实用性、鲁棒性和响应性,该变换器高阶且难以建模,精确建模极具挑战性,可严格测试神经网络控制策略有效性。

English Abstract

Among the various control strategies for complex DC-DC converters, those employing neural networks have risen to prominence. They excel in their ability to approximate functions without the need for precise mathematical models, which is especially advantageous for complex, nonlinear, and uncertain control systems. This paper presents a novel, online, model-free control strategy for high-order DC-DC converters that harnesses the power of neural networks. By leveraging real-time operational data to train the neural network, this approach facilitates the development of a converter controller devoid of the requirement for an intricate model. The process gradient is extracted using an online estimation technique. The paper delves into the principles underlying model-free systems and provides a detailed analysis of the stability of the proposed control method. To validate the practicality, robustness, and responsiveness of this control framework, an extensive series of experiments has been conducted on a high step-up DC-DC converter, which is high-order and difficult to model. The selection of this converter poses a significant challenge in terms of achieving an accurate model, thereby serving as a rigorous test case for the efficacy of the proposed neural network-based control strategy.
S

SunView 深度解读

该在线神经网络无模型控制技术对阳光电源高阶复杂变换器控制有重要创新价值。无模型神经网络方法可应用于ST储能变流器的多级DC-DC变换器,简化控制器设计并提高适应性。在线训练和梯度估计技术对阳光电源变换器的自适应控制和参数漂移补偿有借鉴意义。该技术对PowerTitan大型储能系统的复杂拓扑控制和鲁棒性提升有应用潜力,可降低建模工作量并提高控制性能。