← 返回
一种增强型基于人工神经网络的多相交错DC-DC变换器纹波最小化技术
An Enhanced ANN-Based Ripple Minimization Technique for Multiphase Interleaved DC-DC Converters
| 作者 | Ahmed Djamel Ayad · Ahmed Safa · Abdelmadjid Gouichiche · Saad Mekhilef |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 储能变流器PCS DC-DC变换器 PWM控制 多物理场耦合 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 多相DC - DC转换器 PCSF - ANN技术 电流纹波最小化 数据收集策略 ANN结构简化 |
语言:
中文摘要
本文提出了一种优化的相电流形状因子—人工神经网络(PCSF-ANN)实现方法,通过动态调节PWM信号间的相位差,以最小化多相DC-DC变换器的总电流纹波。该方法对参数变化、非对称设计、开路故障(OCF)、电压波动和负载变化具有强鲁棒性。为提升性能,首先采用线性近似建模三角形相电流波形,降低数据采集复杂度;其次将OCF检测与主ANN解耦,并采用更小、高效的网络结构,显著减少内存占用并加快执行速度。实验结果表明,新方法在保持纹波抑制性能的同时,将计算时间由373 μs降至136 μs。
English Abstract
This paper introduces an optimized implementation of the Phase Current Shape Factors-Artificial Neural Network (PCSF-ANN) technique, which aims to minimize the total current ripple in multiphase DC-DC converters by dynamically adjusting the phase shift between PWM signals. The method is robust against parameter variations, non-identical designs, open-circuit faults (OCFs), voltage changes, and load variations. Two key enhancements are proposed to improve the PCSF-ANN technique. First, a refined data collection strategy uses linear approximations to model triangular phase current waveforms, significantly reducing computational complexity and processing time. Second, the ANN structure is simplified by decoupling OCF detection from the primary ANN and employing smaller, more efficient architectures. This optimization lowers memory usage, enhances execution time, and simplifies implementation. Experimental validation using a two-phase asymmetrical and a three-phase symmetrical DC-DC boost converter demonstrates that the proposed technique delivers ripple minimization performance comparable to the original PCSF-ANN technique while substantially reducing the computational time from 373 μs to 136 μs.
S
SunView 深度解读
该增强型ANN纹波抑制技术对阳光电源ST系列储能变流器和PowerTitan系统的DC-DC变换器优化具有直接应用价值。通过动态调节多相交错PWM相位差,可显著降低电流纹波,减小滤波器体积,提升功率密度。其对参数变化、开路故障和电压波动的强鲁棒性,契合储能系统宽工况运行需求。136μs的快速计算响应满足实时控制要求,可集成至现有DSP/FPGA控制平台。该方法对SG系列光伏逆变器的Boost升压电路、车载OBC的多相DC-DC模块同样适用,为提升阳光电源功率变换产品的效率、可靠性和智能化水平提供了创新路径,特别是在大功率储能系统中可降低EMI干扰,延长电池寿命。