← 返回

利用优化的无源RC延迟缓解并联SiC MOSFET的阈值电压和电流分配失配

Mitigating Threshold Voltage and Current Sharing Mismatch in Paralleled SiC MOSFETs Using Optimized Passive RC Delays

语言:

中文摘要

在航空航天与工业应用中,基于SiC MOSFET的H桥衍生变换器常因器件间阈值电压(V<sub>TH</sub>)差异导致动态电流分配不均,引发热应力增加与效率下降。本文提出一种针对模块化非反相升降压(NIBB)变换器中并联SiC MOSFET的瞬态电流均衡优化方法。通过建立包含V<sub>TH</sub>失配与寄生参数的栅源电压(V<sub>GS</sub>)动态多变量模型,设计了在开通与关断路径上的优化RC滤波网络,以同步不同阈值电压器件的开关行为。LTspice仿真表明瞬态电流失配降低42%,并在200W、100kHz全SiC NIBB样机实验中实现峰值电流不平衡减少18.6%,同时效率提升1.6%,主要归因于开关损耗的降低。结果验证了RC滤波型栅极驱动优化在提升SiC功率变换器效率与可靠性方面的有效性。

English Abstract

In high-performance applications like aerospace and industrial operations, H-bridge derived converters using silicon carbide (SiC) MOSFETs face challenges from threshold voltage (VTH) and current-sharing mismatches between parallel devices. These mismatches lead to uneven current distribution, increased thermal stress, and reduced efficiency. This paper proposes a solution to mitigate transient current-sharing mismatch in parallel SiC MOSFETs within a modular non-inverting buck-boost (NIBB) converter. A multi-variable analytical model is developed to describe the time-dependent gate-to-source voltage (VGS) dynamics, considering VTH mismatches and parasitic effects. Based on this model, an optimized RC filter network connected to both turn-on and turn-off paths is designed to synchronize switching behavior across devices with differing threshold voltages. The method is validated through LTspice simulations, which show a 42% reduction in transient current mismatch, and experimentally on a 200W all-SiC 100kHz NIBB converter, where an 18.6% reduction in peak current imbalance is achieved. Furthermore, the method improves efficiency by 1.6%, mainly by reducing turn-on and turn-off losses. This study demonstrates the effectiveness of RC-filter-based gate drive optimization in enhancing reliability and efficiency in SiC power converters.
S

SunView 深度解读

该RC延迟优化技术对阳光电源ST系列储能变流器和SG系列大功率光伏逆变器的SiC并联设计具有直接应用价值。当前PowerTitan等大型储能系统广泛采用SiC MOSFET并联以提升功率等级,但阈值电压失配导致的动态电流不均衡会降低系统可靠性。该研究提出的栅极RC滤波网络优化方法可直接应用于阳光电源三电平拓扑和功率模块设计中,通过降低42%瞬态电流失配和18.6%峰值不平衡,有效减少热应力集中,提升1.6%系统效率。该技术对优化阳光电源高功率密度变流器的开关损耗、延长SiC器件寿命、提升工商业储能系统长期可靠性具有重要工程价值,可作为下一代功率模块驱动电路的设计参考。