← 返回
用于宽负载应用的单输入多输出双向谐振变换器的物理信息神经网络建模
Physics-Informed Neural Network Model Description for an SIMO Bidirectional Resonant Converter for Wide-Load Applications
| 作者 | Diego Bernal Cobaleda · Fanghao Tian · Wilmar Martinez |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2025年4月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | SiC器件 多电平 深度学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 物理信息神经网络 功率变换器 粒子群优化算法 效率优化 人工智能建模 |
语言:
中文摘要
本文提出一种面向高自由度电力变换器的物理信息神经网络(PINN)建模方法。该方法综合考虑占空比、相移及功率关系,突破传统调制策略对谐波近似或时域分析的依赖,有助于识别更高效的运行工作点。以一种原边五电平T型逆变器、副边级联双单元多电平逆变器的谐振多输出变换器为案例,实现高低压侧隔离并降低变压器匝数比,提升功率密度潜力。结合粒子群优化(PSO)算法对PINN预测结果进行优化,进一步挖掘性能潜力。通过低功率样机验证,轻载效率显著提升。结果表明人工智能驱动建模在拓展变换器全负载效率方面具有前景,并探讨了数字孪生融合及其他拓扑应用等未来方向。
English Abstract
This article presents a physics-informed neural network (PINN) modeling approach for power converters with a high number of degrees of freedom. In contrast to traditional modulation strategies, which depend on harmonic approximations or time-domain analysis, the proposed method accounts for duty cycles, phase shifts, and input/output power relationships to help identify more efficient operating points (OPs). A resonant multioutput converter is used as a case study, featuring a five-level T-inverter on the primary side and a cascaded two-cell multilevel inverter on the secondary side. This topology maintains isolation between the high-voltage input and low-voltage outputs, and the cascaded structure reduces transformer turns, leading to possible improvements in power density. A particle swarm optimization (PSO) algorithm is applied to the PINN-predicted data to optimize performance further and identify optimal parameter combinations. A low-power prototype is implemented to validate the approach, demonstrating efficiency gains under light-load conditions. The results highlight the potential of artificial intelligence (AI)-driven modeling and optimization in extending converter efficiency across diverse operating scenarios. Tradeoffs, limitations, and future research directions are discussed, including digital twin integration and application to other topologies.
S
SunView 深度解读
该PINN建模方法对阳光电源多端口变换器产品具有重要价值。在ST储能系统中,可优化多电池簇并联的SIMO拓扑建模,突破传统谐波分析局限,实现宽SOC范围高效运行;结合PSO算法可动态寻优调制策略,提升轻载效率。在车载OBC及充电桩产品中,五电平T型逆变器与级联多电平拓扑的结合可降低变压器匝数比、提升功率密度,契合SiC器件高频化趋势。该AI驱动建模方法可扩展至光伏多MPPT通道、储能多簇管理等场景,为数字孪生平台iSolarCloud提供高精度仿真内核,支撑全负载效率优化与预测性维护功能开发。