← 返回
基于数字孪生与自演化补偿器的电力电子系统在线健康监测及改进参数辨识能力
Digital Twin-Based Online Health Monitoring of Power Electronics Systems With Self-Evolving Compensators and Improved Parameter Identification Capability
| 作者 | Yi-Hua Liu · Zong-Zhen Yang · Min-Chen Liu |
| 期刊 | IEEE Journal of Emerging and Selected Topics in Power Electronics |
| 出版日期 | 2024年11月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 储能系统 SiC器件 可靠性分析 故障诊断 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电力电子系统 数字孪生 元启发式方法 参数估计 自进化补偿器 |
语言:
中文摘要
电力电子系统(PES)在航空航天、可再生能源和电动汽车等领域至关重要。本文比较了粒子群优化(PSO)、灰狼优化和蜻蜓算法三种元启发式方法的参数估计性能,并提出一种结合物理行为的两阶段元启发式方法,显著提升了寄生电阻估计精度与参数识别速度。相较于传统PSO,MOSFET和电感寄生电阻估计误差分别由31%和45%降至1.5%和2.3%,计算时间减少逾60%。该方法在外部扰动下仍具高鲁棒性,平均使MOSFET和电感寄生电阻识别误差分别降低11.8%和16.7%。此外,引入自演化补偿器可在线自动调节控制器参数,有效应对系统老化问题,步响应误差最大改善达10.6%。
English Abstract
Power electronics systems (PESs) are crucial for energy conversion and control in various sectors, such as aerospace, renewable energy, and electric vehicles. Health monitoring using digital twin (DT) technology is crucial for fault diagnosis, system design, and maintenance in PES, enhancing system reliability and performance. This study first compares the parameter estimation capabilities of three metaheuristic methods: particle swarm optimization (PSO), grey wolf optimization, and the dragonfly algorithm (DA). After that, a two-stage metaheuristics method is proposed, considering physical behavior to enhance the accuracy of estimating parasitic resistances and rapidly identifying PES parameters. Compared to the traditional PSO, the proposed two-stage PSO method improves MOSFET and inductor’s parasitic resistance estimation errors from 31% and 45% to 1.5% and 2.3%, respectively, and reduces computation time by over 60%. Next, parameter identification accuracy and robustness under various external disturbances are also investigated. Next, parameter identification accuracy and robustness under various external disturbances are also investigated. Based on the test results, the proposed method can reduce the error in MOSFET parasitic resistance by up to 31.7% and 11.8% on average. In addition, it can decrease the error in inductor parasitic resistance by a maximum of 44.6% and 16.7% on average. Furthermore, this article introduces a self-evolving compensator that automatically adjusts controller parameters online based on identified component values. This approach addresses the age of PES and improves step response errors by up to 10.6%.
S
SunView 深度解读
该数字孪生健康监测技术对阳光电源ST储能变流器和SG光伏逆变器产品线具有重要应用价值。两阶段元启发式方法可精准辨识SiC MOSFET和电感寄生参数(误差降至1.5%/2.3%),直接提升PowerTitan储能系统功率模块的状态监测精度。自演化补偿器能在线自适应调节控制参数,可集成至iSolarCloud平台实现预测性维护,有效应对光伏逆变器和储能PCS长期运行中的器件老化问题。该技术的高鲁棒性(外部扰动下误差降低11.8%/16.7%)特别适用于电网波动环境下的构网型GFM储能系统,可延长IGBT/SiC模块寿命,降低运维成本,提升系统可靠性指标。