← 返回
电动汽车驱动 SiC器件 可靠性分析 故障诊断 ★ 5.0

基于多时间尺度数字孪生的升压变换器健康与故障监测

Multitime-Scale Digital Twin for Health and Fault Monitoring of a Boost Converter

语言:

中文摘要

功率电子变换器中元器件的退化严重威胁系统可靠性,其退化行为与单个元件健康状态密切相关,可能引发连锁效应,导致系统寿命缩短或故障。本文提出一种基于多时间尺度数字孪生的运行状态监测方法,结合改进的伪启发式健康监测与基于模式识别的故障监测,并在升压变换器中进行验证。该方法利用上管开关/二极管电压和电感电流实现更精确的健康状态估计与快速故障检测。由于导通电阻R<sub>ds,ON</sub>与电感串联电阻R<sub>L</sub>退化对电感电流和输出电压影响相似,单独监测难度大。本文全面分析多种故障类型,并在低压SiC变换器原型上实验验证。所提故障监测算法不依赖运行条件与传感器完整性,利用器件两端脉动电压的特征模式实现鲁棒性监测,相较传统基于电流阈值的方法显著提升检测性能。最后,探讨了在顶部器件并联电压传感器带来的设计挑战与控制复杂性。

English Abstract

Component degradation in power electronic converters poses a serious threat to system reliability. This degradation is linked to the health of individual components, potentially causing a butterfly effect that leads to reduced lifespan or faults in the power electronic system. This article presents a multitime scale digital twin (DT)-based condition monitoring approach, featuring enhanced pseudoheuristic health monitoring (HM) and pattern recognition-based fault monitoring (FM), demonstrated in a boost converter application. The proposed concept utilizes the application of condition monitoring using top switch/diode voltage and inductor current for improved health estimation and faster fault detection. It should be noted that the degradation of the deviceon-resistance R_ ds,{ {ON}} and inductor series resistance R_L similarly impacts inductor current and output voltage, making it challenging to monitor individual degradation. This article comprehensively analyzes different types of faults and experimentally validates on a low-voltage SiC-based converter prototype. The proposed FM algorithm is independent of operating conditions and sensor integrity issues, as the significant pulsating voltages across the device provide patterns with enough tolerance for robust FM, thereby enhancing fault detection compared with the inductor/switch current threshold-based fault detection algorithm in the existing literature. Finally, this article delves into design considerations and challenges related to adding a voltage sensor across the top device and associated control complexities.
S

SunView 深度解读

该多时间尺度数字孪生技术对阳光电源ST储能变流器和SG光伏逆变器的可靠性提升具有重要价值。文中针对SiC器件Rds,ON退化与电感ESR退化的解耦监测方法,可直接应用于阳光电源SiC功率模块的健康管理。基于器件脉动电压特征模式的故障检测算法,不依赖传感器完整性,可增强iSolarCloud平台的预测性维护能力。该技术对Boost/Buck等DC-DC变换器的实时监测方案,适用于车载OBC充电机和PowerTitan储能系统的PCS单元,通过数字孪生模型实现元器件级健康状态估计,可显著降低系统停机风险,延长MTBF指标,为阳光电源构建更智能的故障预警体系提供技术路径。