← 返回
HiGN-ARec:一种用于空间层级光伏功率预测的自适应协调分层图网络
HiGN-ARec: A Hierarchical Graph Network with Adaptive Reconciliation for PV Power Forecasting in Spatial Hierarchy
| 作者 | Yanru Yang · Ping Wang · Shaolong Shu · Feng Lin |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年8月 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏功率预测 分层图网络 基础预测 协调矩阵 实验验证 |
语言:
中文摘要
在具有层级结构的电网中,光伏(PV)功率预测至关重要。本文提出一种端到端深度网络HiGN-ARec,可同时预测各层级的光伏功率。该模型包含基础预测与协调两部分:基础预测部分结合先进的时空模块与跨层级交互模块,充分挖掘层级内与层级间信息;协调部分引入可学习的协调矩阵P和聚合矩阵S,以实现预测结果的动态调整与层级一致性约束。实验基于美国国家可再生能源实验室(NREL)的合成数据验证了方法的有效性,结果表明所提方法优于现有对比方法。
English Abstract
Prediction of photovoltaic (PV) power is extremely important in power grid which is organized in a hierarchical framework. In this paper, we propose a novel end-to-end deep network, named hierarchical graph network with adaptive reconciliation (HiGN-ARec), to predict the PV power for all levels. Specifically, HiGN-ARec consists of two parts: the base forecasts and the reconciliation. For the base forecasts, we adopt the state-of-the-art spatio-temporal (ST) modules to exploit the intralevel information and propose interaction modules to capture the valuable inter-level information. The cooperation of both modules in the base forecasts contributes to the significant enhancement of the accuracy of base forecasts. For the reconciliation, we propose a reconciliation matrix P which is used to adjust the base forecasts and aggregation matrix S to impose the consistency constraint on the network. The reconciliation matrix P is learnable and determined with other parameters in the network via training. It incorporates knowledge about hierarchy structure and learned parameters that adjust base forecasts effectively. We use synthetic solar PV power plant data from the National Renewable Energy Laboratory (NREL) to verify the effectiveness of the proposed method. Experimental results demonstrate the superiority of our proposed approach over the competing methods.
S
SunView 深度解读
该分层图网络光伏功率预测技术对阳光电源iSolarCloud智能运维平台及SG系列光伏逆变器具有重要应用价值。其层级化预测架构可直接应用于分布式光伏电站的多层级功率管理:从单台SG逆变器到汇流箱、再到区域电站的全链条预测。自适应协调机制能确保各层级预测一致性,可优化PowerTitan储能系统的充放电策略制定,提升储能配置的经济性。跨层级交互模块挖掘的时空关联特征,可增强iSolarCloud平台的智能诊断能力,实现更精准的预测性维护。该方法对构建阳光电源新一代智能能量管理系统(EMS)具有直接借鉴意义,可提升光储协同控制的精度与响应速度。