← 返回
取代型多金属氧酸盐修饰的SnO₂用于增强界面接触以实现高效碳基全无机钙钛矿太阳能电池
Substituted polyoxometalate-modified SnO2 for enhanced interfacial contact for high-efficiency carbon-based all inorganic perovskite solar cells
| 作者 | Xueying Xua · Weilin Chena · Yinan Houc · Qunwei Tangb |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 299 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 GaN器件 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | [POMs](https://www.sciencedirect.com/topics/chemistry/polyoxometalate "Learn more about POMs from ScienceDirect's AI-generated Topic Pages") modification enhances SnO2 conductivity and reduces interfacial charge accumulation. |
语言:
中文摘要
摘要 SnO₂在光伏应用中表现出三个关键特性:低温制备工艺、高导电性和优异的紫外光稳定性。这些优势使其成为高性能钙钛矿太阳能电池(PSCs)中一种理想的电荷传输材料。然而,基于SnO₂的PSCs仍面临巨大挑战,较差的界面接触和界面缺陷是导致器件效率损失和长期稳定性下降的重要因素。本研究通过将过渡金属取代的Keggin型多金属氧酸盐K₆H₄[SiW₉O₃₇{Ni(H₂O)}₃({SiW₉Ni₃})与SnO₂量子点进行策略性整合,在全无机CsPbI₂Br钙钛矿太阳能电池中实现了协同性的界面工程。SnO₂@SiW₉Ni₃复合电子传输层通过增强的电子迁移通道显著提升了电导率。{SiW₉Ni₃}还能通过端基氧原子与欠配位Sn⁴⁺之间的强化学键合作用钝化界面缺陷,并减少氧空位缺陷,从而有效抑制非辐射复合。此外,金属-氧配位作用可调控钙钛矿的结晶过程,从而在SnO₂@SiW₉Ni₃基础上形成无针孔且高质量的钙钛矿薄膜。目标器件实现了13.09%的最高光电转换效率(对照器件为10.75%),同时开路电压(VOC)显著从1.256 V提升至1.301 V。与此同时,优化后的器件在环境条件下老化600小时后仍保持初始效率的90%以上,展现出优异的工作稳定性。本研究建立了一种由多金属氧酸盐驱动的界面工程策略,为推进高性能全无机钙钛矿太阳能电池的发展提供了新途径。
English Abstract
Abstract SnO 2 demonstrates three critical characteristics for photovoltaic applications, low temperature preparation process, high conductivity and high ultraviolet light stability. These superiorities makes it a preferred choice for high-performance perovskite solar cells (PSCs) as a charge transport material. However, PSCs based on SnO 2 still faces great challenges. Poor interface contact and interface defects are important factors for loss of efficiency and long-term stability. This study demonstrates a synergistic interface engineering in all-inorganic CsPbI 2 Br solar cells through strategic integration of transition-metal substituted Keggin-type polyoxometalates K 6 H 4 [SiW 9 O 37 {Ni(H 2 O)} 3 ({SiW 9 Ni 3 }) with SnO 2 quantum dots. The SnO 2 @SiW 9 Ni 3 composite electron transport layer boosts electrical conductivity through enhanced electron mobility channels. {SiW 9 Ni 3 } can also passivate interfacial defects via strong chemical bonding between terminal oxygens and undercoordinated Sn 4+ and reduce oxygen vacancy defects, effectively suppressing non-radiative recombination. Additionally, perovskite crystallization can be regulated by metal–oxygen coordination, which result in a pinhole-free and high quality film based on SnO 2 @SiW 9 Ni 3 . The target devices achieve a champion PCE of 13.09 % (vs. 10.75 % control) with a remarkable open-circuit voltage ( V OC ) enhancement from 1.256 V to 1.301 V. At the same time, the optimized devices retain over 90 % initial efficiency after 600 h ambient aging, demonstrating prominent operational stability. This work establishes a polyoxometalate-driven interfacial engineering strategy for advancing high-performance all-inorganic perovskite solar cells.
S
SunView 深度解读
该SnO2基钙钛矿电池界面工程技术对阳光电源SG系列光伏逆变器的组件适配性优化具有重要参考价值。研究中SnO2@SiW9Ni3复合电子传输层通过增强电子迁移率提升导电性的机制,可启发我们在逆变器MPPT算法中针对新型高效组件的特性曲线进行优化。其界面缺陷钝化抑制非辐射复合的策略,与阳光电源在SiC/GaN功率器件界面优化中的技术路径相通。此外,该技术实现的13.09%效率提升和600小时稳定性验证,为iSolarCloud平台的组件衰减预测模型提供了新型电池技术的数据参考,助力提升光伏系统全生命周期的发电量评估精度。