← 返回
储能系统技术 储能系统 强化学习 ★ 5.0

基于模型优化的残差深度强化学习在逆变器型电压-无功控制中的应用

Residual Deep Reinforcement Learning With Model-Based Optimization for Inverter-Based Volt-Var Control

作者 Qiong Liu · Ye Guo · Lirong Deng · Haotian Liu · Dongyu Li · Hongbin Sun
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年9月
技术分类 储能系统技术
技术标签 储能系统 强化学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 残差深度强化学习 逆变器电压无功控制 近似模型驱动优化 马尔可夫决策过程 优化性能
语言:

中文摘要

提出一种基于近似模型驱动优化的残差深度强化学习(RDRL)方法,用于主动配电网中的逆变器型电压-无功控制(IB-VVC)。通过改进的马尔可夫决策过程统一建模模型驱动与RDRL方法,RDRL在模型基策略动作基础上学习残差动作。该方法继承了近似模型优化的控制能力,并通过残差策略学习增强策略优化性能。由于实际中获取的近似模型通常较为可靠,模型优化所得动作接近最优,从而缩小残差动作搜索空间,提升评论器逼近精度并降低执行器搜索难度。仿真结果表明,RDRL在学习过程中显著提升优化性能,并在69节点和141节点平衡配电系统上逐项验证了其优越性能的三个机理。

English Abstract

A residual deep reinforcement learning (RDRL) based on an approximate-model-driven optimization approach is proposed for inverter-based volt-var control (IB-VVC) in active distribution networks. A modified Markov decision process is introduced to formulate the model-based and RDRL-based IB-VVC simultaneously, and then RDRL learns a residual action based on the action of the model-based approach with an approximate model. It inherits the control capability of the approximate-model-based optimization and enhances the policy optimization capability by residual policy learning. Since the approximate model acquired by operators is generally relatively reliable, the action solved by model-based optimization approaches is not far away from the optimal one. This allows RDRL to search for the residual action in a smaller residual action space, which further improves the approximation accuracy of the critic and reduces the search difficulties of the actor. Simulations demonstrate that RDRL improves the optimization performance considerably throughout the learning stage and verifies their three rationales for superior performance point-by-point on 69 and 141 bus balanced distribution networks.
S

SunView 深度解读

该残差深度强化学习方法对阳光电源ST系列储能变流器和PowerTitan大型储能系统的电压-无功控制具有重要应用价值。技术可直接应用于:1)ST系列储能变流器的智能VVC控制策略,通过残差学习优化逆变器无功输出,提升电网电压支撑能力;2)PowerTitan储能系统的多机协调控制,在iSolarCloud平台集成RDRL算法实现分布式储能的自适应电压调节;3)光储一体化项目中SG逆变器与储能系统的协同优化。该方法结合模型驱动与数据驱动优势,可显著提升阳光电源产品在复杂配电网环境下的电压调节精度和响应速度,增强构网型GFM控制性能,为智能运维平台提供AI决策能力。