← 返回
光伏发电技术 储能系统 MPPT 机器学习 ★ 5.0

一种基于机器学习的光伏系统在复杂局部遮阴条件下的全局最大功率点跟踪技术

A Machine Learning-Based Global Maximum Power Point Tracking Technique for a Photovoltaic Generation System Under Complicated Partially Shaded Conditions

作者 Yi-Hua Liu · Yu-Shan Cheng · Yu-Chih Huang
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年12月
技术分类 光伏发电技术
技术标签 储能系统 MPPT 机器学习
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏发电系统 全局最大功率点跟踪 机器学习 回归树 α-扰动观察法
语言:

中文摘要

在局部遮阴条件下,光伏系统输出功率与电压关系呈多峰特性,导致全局最大功率点(GMPP)追踪困难。本文提出一种基于机器学习的两阶段GMPPT方法:第一阶段采用回归树预测GMPP大致位置,第二阶段利用α-扰动观察法精确捕获GMPP。通过建立仿真平台生成训练数据,优化并集成回归树模型。在252种遮阴模式下,平均跟踪损耗为2.13 W,平均响应时间0.11秒,准确识别出244种情况下的GMPP区间。实验结果表明,该方法在追踪精度和速度上均优于五种先进方法。

English Abstract

When the photovoltaic generation system (PVGS) operates under partially shaded conditions (PSC), its output power versus voltage (P-V) characteristic curve becomes multimodal, which complicates the search for the global maximum power point (GMPP). This paper proposes a GMPP tracking (GMPPT) method based on machine learning (ML). In the first stage, the regression tree (RT) is used to predict the approximate location of the GMPP. In the second stage, the α-perturb and observe (α-P&O) method is used to obtain the precise GMPP. This study first establishes a PVGS simulation platform and generates the training data required for RT, then optimizes the obtained RT and integrates it into the simulation platform. Finally, this paper compares the proposed method with the state-of-the-art approaches. It can be seen from the results that the proposed method has an average tracking power loss of 2.13 W and an average tracking time of 0.11 seconds under 252 different shading patterns (SPs). It can correctly identify 244 intervals where the exact GMPP is located among the 252 test SPs. The experimental results show that the proposed method outperforms 5 state-of-the-art approaches in terms of tracking accuracy and tracking time under three shading patterns, thus confirming its excellence.
S

SunView 深度解读

该机器学习GMPPT技术对阳光电源SG系列光伏逆变器的MPPT算法优化具有重要应用价值。当前SG逆变器在复杂遮阴场景下的多峰功率曲线处理仍依赖传统扰动观察法,易陷入局部最优。该研究提出的回归树+α-扰动观察两阶段方法,可将平均响应时间缩短至0.11秒,跟踪损耗降至2.13W,显著优于现有方案。建议将此技术集成到SG系列逆变器的DSP控制算法中,结合iSolarCloud云平台积累的海量遮阴数据训练优化模型,提升山地、屋顶等复杂安装环境下的发电效率。该技术也可扩展至ST储能系统的光储协同控制,实现遮阴工况下的最优能量管理。