← 返回
风电变流技术 储能系统 ★ 5.0

基于尾流模型动态校准的虚实结合风电场最大功率发电控制

Virtuality-Reality Combination Control for Wind Farm Maximum Power Generation With Wake Model Dynamic Calibration

作者 Jinxin Xiao · Pengda Wang · Sheng Huang · Qiaoqiao Luo · Weimin Chen · Juan Wei
期刊 IEEE Transactions on Sustainable Energy
出版日期 2024年11月
技术分类 风电变流技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 风电场 动态最大功率发电控制 虚实结合控制方案 尾流模型动态校准 总发电量
语言:

中文摘要

针对尾流效应的时间延迟特性导致下游风电机组未来状态信息无法直接获取的问题,本文提出一种新型虚实结合的风电场动态最大功率发电控制方案。通过无时间延迟的尾流模型计算虚拟风电场风速,提前获取对应于实际风电场当前来流风速的未来状态信息。为保证虚实风电场状态一致性并提升优化模型精度,提出尾流模型动态校准方法以提高尾流风速预测精度。在此基础上实施基于校准模型的主动尾流控制策略,最大化虚拟风电场总发电量,并依据尾流延迟时间将最优控制指令延时下发至实际风电场。仿真结果表明,该方案在不同风况下均能提升尾流模型计算精度、增加风电场总发电量并改善疲劳载荷分布。

English Abstract

Due to the time delay characteristic of wake effect, the future state information of downstream wind turbines (WTs) is required for wind farm (WF) dynamic optimization but cannot be directly measured. To address the issue, this study proposes a novel virtuality-reality combination control scheme for WF dynamic maximum power generation control (DMPGC). The wind speed in VWF is calculated by wake model without time delay, thus the future state information corresponding to the current freestream wind speed of RWF can be obtained in advance. To ensure consistency of state information between RWF and VWF, meanwhile to enhance the precision of WF optimization model, a wake model dynamic calibration method is proposed to improve the prediction accuracy of wake wind speed. Thereafter, an active wake control strategy based on calibrated wake model is implemented to maximize the total power generation of VWF, and the optimal control commands are delay dispatched to RWF according to the wake delay time. Simulation results show that the proposed scheme improves calculation accuracy of wake model, increases total power generation and owns better fatigue load distribution of WF under different wind conditions.
S

SunView 深度解读

该虚实结合控制技术对阳光电源的储能和风电产品线具有重要应用价值。首先,文中提出的动态校准方法可优化ST系列储能变流器的功率预测算法,提升储能调度精度。其次,尾流模型的延时补偿思路可应用于PowerTitan大型储能系统的风光储联合控制,实现更精准的功率平滑。此外,该技术对风电场群控策略提供新思路,可集成到iSolarCloud平台实现智能化调度优化。建议在ST2000和PowerTitan产品中验证该技术的工程应用效果,重点关注储能系统对风电功率波动的动态响应特性。