← 返回
基于风险场景感知的日前风电出力预测框架
A Framework of Day-Ahead Wind Supply Power Forecasting by Risk Scenario Perception
| 作者 | Mao Yang · Yutong Huang · Zhao Wang · Bo Wang · Xin Su |
| 期刊 | IEEE Transactions on Sustainable Energy |
| 出版日期 | 2025年1月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 风电功率预测 风险场景感知 风电场群 预测曲线修正 预测准确性 |
语言:
中文摘要
大规模风电并网背景下,风电功率预测对电力系统安全稳定运行至关重要。现有预测方法重统计精度而轻应用风险,导致预测值与实际调度需求脱节。为此,本文提出一种考虑风险场景感知的风电出力预测(WSPF)框架。首先结合数值天气预报风速波动信息,利用TimesNet识别预测中的风险场景;其次构建有效消纳区与供电风险区评价指标,并据此优化预测曲线修正方案;最后融合多种预测模型进行验证。在中国内蒙古某风电集群的应用结果表明,该方法使WSPF平均精度提升37%,验证了其有效性与普适性。
English Abstract
Wind power forecasting (WPF) systems are essential to maintain the safe and stable operation of the power system in case of large-scale grid-connected wind farms. However, the current forecasting has the problem of disunity between statistical value and application value, that is, it only pays attention to its forecasting accuracy and ignores the risks caused by it in the power system. In order to solve the above problems, this study proposes a framework of wind supply power forecasting (WSPF) for wind farm cluster, which takes into account the risk scenario perception. First of all, aiming at the predicted risk phenomenon in WPF, TimesNet combined with the fluctuation information of Numerical Weather Prediction (NWP) wind speed is used to identify the corresponding risk scenarios. Secondly, the effective consumption area and power supply risk area evaluation index, as well as the accuracy of WSPF are defined, and the optimal forecasting curve correction scheme is fitted according to the index. Thirdly, taking into account the correction scheme and identification results, a variety of predictors are used to verify the WSPF according to the above framework. Finally, the proposed method is applied to a wind farm cluster in Inner Mongolia Autonomous region of China, the average accuracy of WSPF has increased by 37%, which verifies the effectiveness and universality of this method.
S
SunView 深度解读
该风电预测框架对阳光电源的储能和风电变流产品具有重要应用价值。首先,TimesNet风险场景识别技术可集成至ST系列储能变流器的调度控制系统,优化储能容量配置和充放电策略。其次,风险区评价方法可应用于PowerTitan大型储能系统的调峰调频功能设计,提升系统对风电波动的响应能力。此外,该预测框架也可移植到iSolarCloud平台,为风储联合运行提供更精准的功率预测支持。这些应用将显著提升阳光电源新能源并网产品的智能化水平,增强市场竞争力。